
Genstat®

Command language

www.vsni.co.uk

An Introduction to the Genstat Command Language
(18th Edition)

by Roger Payne, Darren Murray and Simon Harding

Genstat is developed by VSN International Ltd, in collaboration with practising statisticians at
Rothamsted and other organisations in Britain, Australia, New Zealand and The Netherlands.

Published by: VSN International, 2 Amberside, Wood Lane,
Hemel Hempstead, Hertfordshire HP2 4TP, UK

E-mail: info@genstat.co.uk
Website: http://www.genstat.co.uk/

First published 2010, for GenStat for Windows 13th Edition
This edition published 2015, for Genstat for Windows 18th Edition

Genstat is a registered trade of VSN International. All rights reserved.

© 2015 VSN International

Contents

Introduction 1

1 Menus and commands 2
1.1 Menus 2
1.2 Practical 9
1.3 Commands 9
1.4 Practical 17

2 Data structures 18
2.1 Variates, factors and texts 18
2.2 Practical 21
2.3 Forming factors from variates or

texts 22
2.4 Other data structures 23
2.5 Practical 24

3 Syntax 25
3.1 Syntax of commands 25
3.2 Making lists more compact 29
3.3 Practical 30
3.4 Abbreviation rules 30
3.5 Repeating a statement 32
3.6 Practical 32
3.7 Suffixed identifiers and pointers 33
3.8 Unnamed data structures 34
3.9 Practical 35
3.10 Formulae to define statistical

models 35

4 Input and output 38
4.1 Reading data from text files 38
4.2 Practical 41
4.3 Reading data from spreadsheet files

42
4.4 Practical 43
4.5 Exporting data to files 44
4.6 Practical 45
4.7 Database files 45
4.8 Custom output and captions 45
4.9 Practical 49

5 Calculations and manipulation 50
5.1 Calculations 50
5.2 Practical 60
5.3 Subsets of data values 60
5.4 Practical 63
5.5 Sorting data 63
5.6 Practical 64

5.7 Other manipulation facilities 65

6 Regression 66
6.1 Simple linear regression 67
6.2 Practical 75
6.3 Multiple linear regression 75
6.4 Practical 81
6.5 Regression with groups 81
6.6 Practical 90
6.7 Other regression facilities 90

7 Analysis of variance 91
7.1 Designs with a single error term 92
7.2 Practical 98
7.3 Randomized-block designs 98
7.4 Plots of residuals 101
7.5 Practical 102
7.6 Plots of means 102
7.7 Split-plot designs 104
7.8 Practical 107
7.9 Other facilities for anova and design

107

8 Using commands with menus or
spreadsheets 108
8.1 Commands from menus 108
8.2 Practical 110
8.3 Commands to analyse a spreadsheet

111
8.4 Practical 113
8.5 Repeating a sequence of commands

(FOR loops) 113
8.6 Practical 114

9 Programs and procedures 115
9.1 FOR loops (recap) 115
9.2 Block-if structures 117
9.3 Exit from a control structure 118
9.4 Practical 118
9.5 Procedures 119
9.6 Practical 125
9.7 Other useful commands 126

10 Further information 128

Index 130

Introduction

Genstat is a statistical system with a comprehensive system of menus providing all the
standard (and many non-standard) analyses. At first sight, it looks like a standard
Windows application. However, if you look more closely, you will find that the menus
are defining the analyses by writing scripts in Genstat’s command language. These scripts
are saved in Genstat’s Input log to give you a full and complete audit trail. More
importantly, though, you can write your own scripts to do something new or
non-standard, or even just to save time or automate repetitive tasks.

Once you start to write your own programs, you may want to keep them to use again
in future. The most convenient way of doing this is to form them into procedures. The
use of a Genstat procedure looks exactly the same as the use of one of the standard
Genstat directives. You can thus extend and customize Genstat for your own special
requirements.

So by learning the command language, you can unlock the full power of Genstat,
improve your productivity and extend the scope of your analyses.

This Introduction was written to provide the notes for VSN’s short course on the
Genstat command language, but it can be used equally well as a self-learning tool:

• it explains the basic rules that apply to all Genstat commands, and shows how you
can use them alongside the menus in Genstat for Windows;

• it shows where to find help information about individual commands, or example
scripts illustrating various types of analysis;

• it explains the data structures that Genstat uses to store data;
• it tells you how to define statistical models and calculations;
• it explains how you can write your own procedures.

However, it does not attempt to cover everything! Chapter 10 explains where to find
further information. You will see that there are many other Genstat Guides, which can
be accessed from within Genstat for Windows by selecting sub-options of the Genstat

Guides option of the Help menu on the Genstat menu bar. For commands, the most useful
are the two Guides to Genstat. Part 1 gives the formal definition of the Genstat language
and syntax. It then describes (in detail, with examples) the facilities for input and output,
calculations, manipulation, programming and graphics. Part 2 covers Genstat's extensive
statistical facilities.

Figure 1.1

Figure 1.2

Figure 1.3

1 Menus and commands

In this chapter you will learn:
• how Genstat's menus use commands;
• the basic rules of the Genstat syntax.

1.1 Menus

When you start Genstat on a PC running MS Windows, it starts up two processes. The
first, known as the Genstat Client, controls the Windows interface for Genstat. The client
collects information from you and sends it to the second process, which is known as the
Genstat Server. This runs in the background, performing calculations, and returning
information back for the client to display.

To illustrate the concepts, we shall calculate
summary statistics for iron measurements in some soil
samples. The data file Iron.dat is available in
Genstat's Data folder (or directory), together with all the
other data files that we use in this Guide. The menus
that open files always start in your working directory.
To make the Data folder your working directory, click
on Tools on the menu bar and then on the Working

Directory line, as shown in Figure 1.1.

This opens the Working Directory menu
shown in Figure 1.2. You can now click
on the Add Data Folder button, and then
on OK, to make the folder your working
directory.

The file Iron.dat is an ASCII file,
that is, an ordinary text file. So we click
on the ASCII file sub-option of the Load

option of the Data menu on the menu
bar (Figure 1.3) to open the menu to
Read Data From ASCII File (Figure 1.4).

1.1 Menus 3

Figure 1.4

Figure 1.5

The menu has a Browse button that
you can use to locate the file, or you can
type the file name into the field at the
top of the left-hand side of the menu.
(Notice that we do not need to type the
path of the file, as we have made the
Data folder our default directory.) Once
this has been done, the box on the right-
hand side of the menu shows the first
few lines of the file.

Files like these are easiest to read if
the data variables are arranged in
columns, with the names of the
variables in the first line. We can then
check the box to Read Column Names from File, instead of having to type the names into
the menu (notice that the box Names for Data Columns is greyed out when the box is
checked). Figure 1.4 shows that the file has data for four variables: sample, site, FE
and weight. We have also checked the box to Automatically Group Data, and entered 15
as the Maximum Number of Categories.

When we click on Open, Genstat
counts the number of distinct values
taken by each variable and, if that is less
than 15, it pops up a menu so that we
can choose whether or not to make that
variable a factor. In the iron data,
sample has only 12 different values.
To make it a factor we leave the radio
button in Figure 1.5 at its default
setting, define as factor, and click on OK. The variable site has only six values, and we
can make that into a factor in a similar way.

In Figure 1.4 we checked the boxes for all the display categories, to generate the output
below.

First line of data with no missing values

 2 5 236.40 12.19

Summary

The file C:/Program Files/Gen18ed/Data/Iron.dat is assumed to contain 4 structure(s), with
one value for each structure on each record.

The structure identifiers read from the file are: sample, site, FE and weight.

Occurrence of distinct values of sample

4 1 Menus and commands

Count
category

1 12
2 12
3 12
4 12
5 12
6 12
7 12
8 10
9 12

10 10
11 10
12 10

 Occurrence of distinct values of site

Count
category

1 24
2 22
3 24
4 18
5 24
6 24

The file contains 136 values for each of the following structures:

Identifier Type Missing
sample factor 0

site factor 0
FE variate 0

weight variate 0

The data record iron measurements made from a set of soil samples. The first two
variables categorize the samples: each value of site records the code number of the
laboratory that carried out the analysis, and sample contains the number (from 1 to 12)
of the originating soil sample that was given to the laboratory to analyse. The other two
variables are numbers: the FE stores the measured parts per million (ppm) of iron, and
weight stores the weights of soil that were analysed. Lists of numbers like these are
stored in variates. Genstat has thus defined four data structures to store the information.

1.1 Menus 5

Figure 1.6 Figure 1.7

You can use the Data View pane to see what data structures are currently stored inside
Genstat. The tree allows you to select the types of data structure that you want to list on
the right-hand side. In Figure 1.6, we have opened All Data. The variates are identified by
a blue “v”, and the factors are identified by the red exclamation mark. Genstat provides
a range of data structures that are convenient for different types of data, but these two are
the most common. Notice that, as you rest the mouse on the name of a structure, a small
window appears with information about its attributes. These tool tips are controlled by
the right-mouse menu (Figure 1.7), which can be obtained by making a right-mouse click
on any of the structures. In addition the menu allows you, for example, to delete, rename
or display (i.e. print in the Output window) structures. You can also drag and drop
structures from Data View onto most of Genstat's other menus.

6 1 Menus and commands

Figure 1.8

Figure 1.9

The statistical menus in Genstat for
Windows are accessed from the Stats

menu on the menu bar (Figure 1.8).
Here we have selected the Summary

Statistics sub-option of the Summary

Statistics option, which opens the
Summary Statistics menu shown in
Figure 1.9.

The menu displays summary
statistics describing the contents
of variates, and can also produce
some useful graphs. We enter the
variate Fe into the Variates box,
enter the factor site into the By

Groups box, and click on the Run

button.
Genstat prints summary

statistics for each site, in turn, in
the Output window as shown
below. It also starts another
process, known as the Genstat
Graphics Viewer, to display six
boxplots, one for each of the
laboratories (or sites).

Summary statistics for FE: site 1

Number of observations = 24
Number of missing values = 0

Mean = 289.6
Median = 289.1

Minimum = 269.5
Maximum = 308.2

Lower quartile = 282.1
Upper quartile = 295.6

1.1 Menus 7

Summary statistics for FE: site 2

Number of observations = 22
Number of missing values = 0

Mean = 274.2
Median = 273.2

Minimum = 262.6
Maximum = 283.1

Lower quartile = 270
Upper quartile = 280.1

Summary statistics for FE: site 3

Number of observations = 24
Number of missing values = 0

Mean = 216.3
Median = 212.8

Minimum = 200.6
Maximum = 252.7

Lower quartile = 208.7
Upper quartile = 218.4

Summary statistics for FE: site 4

Number of observations = 18
Number of missing values = 0

Mean = 239.5
Median = 238.1

Minimum = 232.5
Maximum = 255.7

Lower quartile = 236.5
Upper quartile = 239.4

Summary statistics for FE: site 5

Number of observations = 24
Number of missing values = 0

Mean = 234.9
Median = 234.6

Minimum = 222.7
Maximum = 251.6

Lower quartile = 230.2
Upper quartile = 237.1

Summary statistics for FE: site 6

Number of observations = 24
Number of missing values = 0

Mean = 225.5
Median = 224.2

Minimum = 215.3

8 1 Menus and commands

Figure 1.10

Figure 1.11

Maximum = 238.6
Lower quartile = 221.8
Upper quartile = 229.1

The output is labelled using standard statistical terminology but, if you are unsure about
any of the words or phrases, you can use Genstat's context-sensitive help. This links to
the VSNi Knowledge Base, opening the relevant page in your web browser. Put the
cursor into the word of interest, or into the first word of the phrase of interest, and press
the F1 key. For example, if you put the cursor into the word "quartile" and press F1,
Genstat opens the Quartile topic, which contains the information: "The lower quartile is
the value l such that 25% of a sample are less than l. Similarly, the upper quartile is the
value u such that 25% of a sample are greater than u."

Sometimes there is more than one
potentially relevant topic. Genstat
then provides a menu so that you can
select the one that seems most
appropriate. The menu for the word
"median" is shown in Figure 1.10.
Selecting Median (explanation from

glossary) produces the definition:
"Median is the value that divides a
sample into two equally sized
groups."

Figure 1.11 shows the graph,
displayed in a separate window by
Genstat’s Graphics Viewer. You can
zoom the display using the slider on
the toolbar, or by holding the left
mouse button and moving the mouse
up and down. If your mouse has a
centre button, you can move the
display within the window by moving
the mouse with that button held
down. Alternatively, you can use the
scroll bars at the bottom and on the
right-hand side of the screen.

These are schematic boxplots. Each
one has a central box spanning the
inter-quartile range of the data from a
laboratory (so that 50% of the
observations lie inside the box) with
a horizontal bar drawn across the box
at the median. There are whiskers
extending from each box to the most extreme data values within inner fences that are
defined to be at a distance of 1.5 times the interquartile range beyond the quartiles, or at
the furthest data value if that is smaller. Points that lie beyond the whisker are regarded

1.2 Practical 9

Figure 1.12

as outliers, and are plotted as crosses with labels identifying their unit number. Points that
lie beyond outer fences, defined to be at a distance of three times the interquartile range
beyond the quartiles, are regarded as far outliers and plotted in red. Ordinary outliers are
plotted in green.

The display shows that Laboratories 1 and 2 are producing consistently higher results
than the rest, and Laboratory 3’s results are generally lower.

1.2 Practical

Select the Data File sub-option of the Load option of the Data menu. Move from the
directory (i.e. folder) containing the Genstat executable program to the Data directory
and set this as the working directory.

Load the file Sales.gsh and open the Data View pane to see what data structures it
contains.

Use the Summary Statistics menu to display the minimum, maximum and mean sales,
and to plot a boxplot of the sales in each town.
 Print the skewness and kurtosis of the sales figures, and use the context-sensitive help
to obtain some information about what these represent.

1.3 Commands

To calculate summary statistics, and display the graphs in
Section 1.1, the client has formed a script of commands,
and sent them to the server to be executed.

You can see these commands in the Input Log. Depending
on how your copy of Genstat has been set up, the Output

window may also contain a listing of the commands
interspersed with the output. You can control whether this
happens, by using the Options menu, which can be opened
from the Tools menu on the Genstat menu bar, as shown in
Figure 1.12.

10 1 Menus and commands

Figure 1.13

Figure 1.14

The Options menu has tabs to
control many different aspects of the
way that Genstat runs.

The General tab allows you to stop
the Start Page appearing when you
open Genstat, and to control aspects
like the number of files that are
saved for the recent file list.

The Audit trail tab (Figure 1.13)
controls what appears in the Input

Log, the Event Log and the Output

window. The Echo Commands box is
unchecked in Figure 1.13. So the
commands are not displayed in
Output window.

 The contents of the Input Log after drawing the boxplot are in Figure 1.14. There are
three commands here: to print the summary statistics (DESCRIBE), to produce a title for
the boxplot (PRINT), and to draw the boxplot (BOXPLOT). Notice that Genstat has used
a private, temporary structure _tmptext to contain the title. Structures like this always
have names that begin with the underscore character _, to distinguish them from your
own data structures. Previous commands to set the working directory and to load data
into Genstat from the file have scrolled up above those shown in the figure.

All Genstat commands have a common form of syntax: in other words, there are some
general rules that apply to all the commands that you give. We introduce the basic syntax
here to get you started. Full details are given in Chapter 3. There are two types of
commands: directives are the basic commands of the Genstat language while procedures
are extensions of the language, using programs written in the Genstat language itself.
Genstat has a standard library of procedures that are loaded automatically as needed.
Directives and procedures both obey identical rules, so you do not need to know which
you are using.

Genstat can use different colours to identify the various components of the command.
Here, for example, the names of the commands are in blue. This syntax highlighting of

1.3 Commands 11

Figure 1.15

the current window can be controlled by checking or unchecking the Syntax Highlighting

line of the Tools menu (see Figure 1.12).
The context-sensitive help works on the names of commands as well as items in

output. So, we can put the cursor into PRINT in the Input log, and press the F1 key to open
the VSNi Knowledge Base at the page for PRINT.

The top of the page, shown in Figure 1.15, shows some of the options of PRINT, and tells
us that it is a directive that allows you to print data to an output file. This includes the
Output window, which is regarded as the primary output "file" by the server. (Note that
this does not send data or results to a printer: to do that you can select the Print option
from the File menu in the menu bar.)

We will use PRINT to illustrate the basic rules of the Genstat syntax.

12 1 Menus and commands

Figure 1.16 Figure 1.17

Figure 1.18

To give commands directly, it is best to open a new window in which to construct them.
This is done by clicking on File in the menu bar and selecting New, as shown in Figure
1.16. This generates the menu shown in Figure 1.17, allowing you to choose what type
of new window you want. Selecting Text Window and clicking on OK gives you a new,
empty, window which will become the current window. You can type, for example, the
simple command

PRINT 1

to display a single set of data: the number 1.
When constructing commands in a window, you can use the usual keys for typing and

deleting characters, and moving about the window. You can also switch between Insert
and Overwrite mode by pressing the Insert key, and the Status bar will display, with Ins

or Ovr, which mode you are in at any time.
This is a trivial exercise, of course, but it serves

to show how commands work. To get Genstat to
execute this command, leave the cursor at the end
of the line (that is, just after the 1) and select the
Run menu from the menu bar. Select Submit Line, as
shown in Figure 1.18, and the command will be
executed. Alternatively, you can use the "short-cut"
Ctrl+L, by pressing the L key while holding down
the Ctrl key.

The resulting output is displayed in the Output

window, as shown in Figure 1.19.

1.3 Commands 13

Figure 1.19

Figure 1.20

This is not a particularly useful operation of course, because you already know what the
set of data is, and because it consists only of a single number; however, this will quickly
be generalized. In the meantime, you can see that the directive name, PRINT, is like a
command verb which instructs Genstat to do something, and the number 1 is like the
object of the command. All directives, and procedures, work like this, though not all
directive names are actually verbs in the English language. The object is called the
primary parameter of the command.

The PRINT directive, like all others, works with sets of data. You can make it work
with several sets of data at once by giving a list; for example, the command

PRINT 1,2

has two sets, each containing one number, as shown in Figure 1.20.

In Genstat, lists are always constructed using commas. You must not use just spaces; for
example, the command

PRINT 1 2

would be faulted, because the space may be an accident, and you may have meant

PRINT 12

14 1 Menus and commands

Figure 1.21

Figure 1.22

Genstat draws attention to mistakes like
this by popping up a Fault box, as
shown in Figure 1.21. It prints a brief
explanatory message in the Output

window, and records the fact that a fault
has occurred in the a separate window
called the Event Log (see Figure 1.22).
You can click on the Output button to go
to the fault in the Output window, or on
the Event Log button to open the Event

Log. If you do open the Event Log, you
can click on the line of any event to get
Genstat to take you to that fault or
warning in the Output window.

You can, however, use spaces as well as commas. So the following command is
acceptable:

PRINT 1 , 2

You will have noticed that PRINT commands lay out the data in a tabular form,
choosing an appropriate number of decimal places for numbers. By default, a single
number is displayed with four significant digits. Also, sets of data with compatible shape
are laid out in parallel: that is, side-by-side. If you do not want this default display, there
several options to modify it.

1.3 Commands 15

Figure 1.23

Figure 1.24

For example, the command

PRINT [SERIAL=yes] 1,2

displays the two numbers in serial rather than in parallel: that is,
one number by itself, and then the other, as shown in Figure 1.23.

Most Genstat directives and procedures have options like this to
control the way in which the operations are done. They must
always be given in square brackets following the directive or
procedure name and preceding the parameters, if any. Options have
the form name=setting, where here the name is SERIAL and the
setting is yes. Settings can be words, as here, or numbers. If you set several options, you
must separate them with a semi-colon, as in

PRINT [SERIAL=yes; INDENTATION=10] 1,2

This command would indent the output by 10 characters, so that if you arrange to send
the display to a printer, you could rely on having a clear margin on the paper, perhaps for
binding.

The CHANNEL option of PRINT was used in the Input Log, to put the output into the
Genstat text structure _tmptext.

Most Genstat directives and procedures also have auxiliary parameters which control
the way the command works. For example, the command

PRINT 1,2; DECIMALS=0,1

gives the output shown in Figure 1.24.
The effect of the DECIMALS parameter is to specify how

many decimal places to display for each set of data. The
essential difference between an option and an auxiliary parameter is that an option
specifies a modification once and for all for the command: an auxiliary parameter
specifies a modification that may be different for each of the sets of data in turn. The
setting of the DECIMALS parameter above, 0,1, is matched item by item with the setting
of the primary parameter, 1,2. This distinction applies to all Genstat commands.

The setting of an auxiliary parameter is otherwise like that of an option, with the form
name=setting, and the semi-colon separator is needed between successive parameters.
The primary parameter itself has a name, except when there are no auxiliary parameters.
So you could actually give the command:

PRINT STRUCTURE=1,2; DECIMALS=0,1

However, if you specify the primary parameter first in a command, its name can always
be omitted.

You can abbreviate the names of directives to the first four characters. Names of
procedures in the standard Genstat library are defined so that they too can be abbreviated
to four characters. Names of options and parameters can also be abbreviated to four
characters, and sometimes further. The full abbreviation rules are described in Section
3.3.

So far, we have used the very simplest sets of data, consisting of a single number each.
Most practical work is done with series of numbers, like those in Section 1.2. For
example, we can display the values in the variate called FE by simply giving the
command:

16 1 Menus and commands

Figure 1.25

PRINT FE

The name of a data structure is known as its identifier in Genstat. These can consist of
up to 32 letters or digits, but they must start with a letter. Case is significant, so the
identifier FE is different to fe. We have used capital letters for this identifier but lower
case for the others, like sample; however, you may find it easier to stick to all lower-case
or all upper-case for your identifiers, at least while you get started with the system.

The PRINT command works on all types of Genstat data structures, so you can
probably guess that the following command would display all the data that was loaded
in Section 1.2.

PRINT sample,site,FE,weight

Part of the display is shown in Figure 1.25.

Values can be assigned to data structures in many ways; for example, by loading data
from a file, by saving the results of an analysis, or by doing calculations (Chapter 2). In
Genstat, calculations are specified in expressions, and are most often carried out with the
CALCULATE directive. As a simple example, we can calculate the amount of iron in each
tested quantity of soil by multiplying the weight by the concentration of iron:

CALCULATE iron = FE * weight

The weights of soil were in grams, so the resulting weights of iron will be in micrograms.
This CALCULATE command is more powerful than it looks. In fact, 136 separate

calculations are done here: Genstat knows to do this because FE and weight have been
defined to be variates with 136 values. So each of the 136 values stored in FE is
multiplied by the corresponding value in weight and the results stored successively in
a new variate called iron.

We now know enough to make simple changes to the command scripts that the menus
produce. For example, suppose we wanted to produce an ordinary boxplot instead of a
schematic one. This is not a choice provided by the Summary Statistics menu (Figure 1.9).
However, we can copy the BOXPLOT statement from the Input log, edit it in a text window
to become

BOXPLOT [WINDOW=1; TITLE=_tmptext] FE; GROUPS=site

and run it using the Submit Line option of the Run menu. We shall explore these
possibilities further in the later chapters.

A full description of the syntax is in Chapter 3, which shows all the options of PRINT,
as well as its parameters.

1.4 Practical 17

1.4 Practical

Edit the script of commands produced in Practical 1.2 to plot an ordinary boxplot of the
sales in each town. Edit it again to plot a single boxplot for all the data (i.e. with no
groups).

 The price charged for each item sold in the data set Sales.gsh, used in Practical 1.2,
was 2.99. Calculate the amount received on each day in each of the towns, and use the
PRINT directive to display day, town and amount received, in columns, in the Output

window.

2 Data structures

In this chapter you will learn about:
• the LIST directive, which tells you what data structures are currently in store;
• how Genstat uses data structures to store your data and results;
• the most commonly-used data structures – variates, factors and texts;
• how to form factors from factors or texts;
• the other data structures – scalars, matrices, tables etc;
• how to obtain example programs from the chapter about data structures in the

Guide to the Genstat Command Language, Part 1 Syntax and Data Management.
In Chapter 1 we introduced two different types of data structures, and showed how

these can be read into Genstat from an ASCII (text) file. When data are read into Genstat
they are stored within a central data pool in the Genstat server. Information about the
current data structures can be viewed in the Data View pane, as shown in Figure 1.6.
Alternatively, you can use the LIST directive.

LIST

on its own lists all the data structures that are currently stored. Alternatively, you can
specify the types of structures that you want to list, for example

LIST variate,factor

to list the variates and factors.
An important aspect of Genstat is that the data structures are used not only to supply

input to the analysis commands, but also to store output from analyses. Genstat has the
aim that anything that can be printed in an analysis should also be savable in a suitable
data structure, so that it can be used as input to some other command. Thus, for example,
there are directives AKEEP, RKEEP and VKEEP to save output from analysis of variance,
regression and REML analyses. You might want to do this merely to have more control
over the way in which the output is printed. However, it also allows you to write some
very powerful programs, using the methods described later, in Chapter 9.

2.1 Variates, factors and texts

The first data structure that we introduced was a variate, which stores a list of numerical
values. The length (or number of values) of a variate is fixed, and two variates of
different lengths cannot be used in the same calculation (unless you are calculating
summary statistics from them).

The second data structure was called a factor. A factor is a special data structure within
Genstat for defining an allocation of units into discrete groups. Each group can be
represented with a numerical value known as a level, and/or a textual value known as a
label. The groups are also allocated "ordinal" values, represented by the integers 1
upwards, which indicate the ordering of the levels and/or labels. So the ordinal values
show the order in which the levels or labels of the factor will be displayed, for example
when the factor is used to define a dimension of a table.

2.1 Variates, factors and texts 19

Figure 2.1

Figure 2.2

Figure 2.3

To illustrate some of the ways in which
factors can be used, we shall use a data set from
Chapter 3 of the Guide to Anova and Design in
Genstat. The data are stored in the spreadsheet
file Nematode.gsh, which can be accessed
most easily by using the Example Data Sets

menu. To open the menu, we click on File on
the menu bar, and select the Open Example Data Sets option, as shown in Figure 2.1.

In the menu (Figure 2.2), it is
easier to find the relevant file if
you set the Filter by topic drop-
down list to Introduction to the

Genstat Command Language. We
can then select the file,
Nematode.gsh, and click on
the Open data button.

Alternatively, we can click on
the Open option of the File menu
on the menu bar, which opens a
standard Windows menu to
select and open a file. (Exercise:
try this and see what happens.)

Whichever method we use to
open the file, it will be
displayed within the client as a
Genstat spreadsheet, as shown
in Figure 2.3.

The data are from a
randomized-block experiment
that studied treatments to
control nematodes. Each row of
the spreadsheet has data from
one of the plots of the
experiment. Factors in the
spreadsheet are highlighted by
putting a red exclamation mark
on the left-hand side of the
column name, and putting the
name into italics.

The factor Blocks defines the block to which each plot belonged. So this does not
needs any labels, and no levels other than the ordinal numbers 1, 2, ...

The factor Fumigant indicates whether or not the plot was fumigated. So this has two
labels, 'Not fumigated' and 'Fumigated', but the levels are again the same as the
ordinal values (1 and 2).

20 2 Data structures

Figure 2.4

Figure 2.5

Figure 2.6

The factor Amount, however,
has both labels and non-standard
levels. To see these, we put the
cursor into one of the
spreadsheet cells in the Amount
column, and click on the Edit

levels and labels sub-option of
the Factor option of the Spread

menu, as shown in Figure 2.4.

The levels are 0, 1 and 2, matching the descriptions given by the labels (see Figure 2.5).
Genstat uses the labels in printed output, and the levels for calculations.

Variates and factors are two of Genstat's vector data structures. The third is the text,
which is a list of textual strings. To show a text, we can use the Change Sheet or Column

menu to convert Fumigant into a text.
To open the menu, we

click on the Convert sub-
option of the Column

option of the Spread

menu, as shown in
Figure 2.6.

2.2 Practical 21

Figure 2.7

Figure 2.8

We then change the Column

Type of Fumigant to Text, and
click on OK, as shown in Figure
2.7.

Text columns have the letter
T shown in green on the left-
hand side of the column name
(see Figure 2.8).

2.2 Practical

Open the spreadsheet file Iris.gsh using either of the methods described in Section
2.1.

Use the LIST directive to display the names of all the data structures that have been
loaded into the Genstat server.

Look at the help page for LIST, and find out how to display only the identifiers of the
variates that are in store. (Hint: put the cursor into LIST, and press the F1 key to open the
help at that page.)

22 2 Data structures

2.3 Forming factors from variates or texts

We can use the Change Sheet or Column menu (Figure 2.7) to convert variates or texts into
factors. Alternatively, you can form a new factor with the Form Groups menu, which can
be opened by clicking on the Form Groups (Factors) option of the Data menu on the menu
bar. This menu uses the GROUPS directive.

In the simplest form of GROUPS, you specify the identifier of the variate or text using
the first parameter, DATA, and the identifier for the new factor using the FACTOR
parameter. GROUPS then forms a factor with a level for every distinct value of the variate
or text. So, we could form a new factor Fumfac from the text Fumigant, with the
command

GROUPS Fumigant; FACTOR=Fumfac

You can set option REDEFINE=yes if you want to change the variate or text itself to
become a factor (any setting of the FACTOR parameter is then ignored). so we could
convert Fumigant back into a factor with the command

GROUPS [REDEFINE=yes] Fumigant

Alternatively, you can divide the values of the variate or text into groups to be
represented by the factor. You can use the LIMITS option to specify the range of values
for each group. The limits vector is a text or a variate, depending whether the factor is
being defined from a variate or a text; its values specify boundaries for the ranges. The
BOUNDARIES option controls whether these are regarded as upper or lower boundaries;
by default BOUNDARIES=lower. You can also ask GROUPS itself to set limits that will
partition the units into groups of nearly equal size. You should then specify the NGROUPS
option and leave the LIMITS parameter unset. (If you give both LIMITS and NGROUPS,
then NGROUPS is ignored.)

If you are defining a factor from a variate VECTOR, the LMETHOD option controls how
the levels vector is formed, with the following settings:

median forms the levels from the median of the units in
each group (default);

minimum forms them from the minimum value in each
group;

maximum form them from the maximum value;
limit uses the corresponding value from the LIMITS

variate, if available, otherwise it takes the
minimum value if BOUNDARIES=lower, or takes
the maximum value if BOUNDARIES=upper;

given uses the values supplied (in a variate) by the
LEVELS parameter.

With any of the settings median, minumum, maximum or limit, you can use the
LEVELS parameter to specify a variate to store the levels that are produced; this can be
done even if no factor is being formed, that is if no identifier is supplied for the factor by
the FACTOR list. Finally, if you set LMETHOD=*, no levels are formed and any existing
levels of the factor will be retained if they are still appropriate; otherwise the levels will
be the integers 1 upwards. With any of these settings, you can use the LABELS parameter
to specify labels for the factor.

Similar rules apply if you have a text VECTOR except that LMETHOD then governs how

2.4 Other data structures 23

Figure 2.9

the labels are defined for the factor, and LEVELS can be used to specify its levels. The
CASE option controls whether the case of the letters in the text strings is important. So,
for example, if you set CASE=ignored the strings 'April' and 'april' will be put
into the same group. With the default, CASE=significant, they would form different
groups.

When the levels are formed from a LIMITS variate, there will be one group with no
corresponding limit. If BOUNDARIES=upper, the extra group is above the final limit. The
level assigned to that group is then the value that is the same distance above the final
limit as the distance between the final limit and the last but one limit. If
BOUNDARIES=lower, the extra group is below the first limit, and its level is given the
value that is the same distance below the first limit as the distance between the first and
second limits. The situation is similar with a LIMITS text, but the label for the extra
group is always the single-character string '-'. If you would prefer to have an exact
correspondence between the level and the limits, you can set option
OMITUNBOUNDED=yes to omit the "unbounded" extra group. Any units beyond the final
upper limit, or below the initial lower limit, are then given missing values.

The LDIRECTION option controls the ordering of the levels (for a variate VECTOR) or
the labels (for a text VECTOR) when LMETHOD is set to median, minimum or maximum.
By default, they are sorted into ascending order, but you can set LDIRECTION=given
to take them in the order in which they occur in the VECTOR. This may be useful, for
example, if a text vector contains the names of days or of months in calendar order.

You can set the DECIMALS option to request that the values of a variate VECTOR be
rounded to a particular number of decimal places before the groups are formed: for
example DECIMALS=0 would round each value to the nearest integer.

2.4 Other data structures

There are many other data structures available within Genstat, each with appropriate
attributes. A single numerical value is stored within a scalar. A two dimensional array
of data is contained in a matrix, and the two specialized forms of matrices (symmetric or
diagonal) can also be used. Numerical results of cross tabulations or analyses are stored
in tables that are indexed by a number of classifying factors. Pointers store references to
(i.e. "point" to) sets of other data structures. A dummy stores a reference to a single data
structure. Expressions define numerical calculations, and formulae define statistical
models.

Full details about all
of Genstat 's data
structures are given in
Chapter 2 of the Guide
to the Genstat Command
Language, Part 1 Syntax
and Data Management.
To open this within
Genstat, click on the
S y n t a x a n d D a t a

Management sub-option
of the Genstat Guides

24 2 Data structures

Figure 2.10

Figure 2.11

option of the Help menu on the menu bar, as shown in Figure 2.9.
The Guide explains

the syntax of the
directives that "declare"
(i.e. define) the various
types of data structure,
and has example
programs to show their
use. They can be
accessed using one of
the examples menus,
opened by clicking on
the Syntax and Data

Management sub-option
of the Examples option
of the Help menu on the menu bar (Figure 2.10).

You can filter by chapter to make it easier to
find the example you want. You can then click
on Open to open it in a text window, or Open

and Run to open it and then run it (see Figure
2.11).

2.5 Practical

Open and run Example 2.4.1 from the Guide to the Genstat Command Language, Part
1 Syntax and Data Management. Notice that you can define the numbers of rows or
columns using a vector (like a variate or a text), or using a pointer, instead of giving a
scalar integer. If you do this, the values of the vector or pointer are used as labels when
the matrix is printed.

3 Syntax

In this chapter you will learn the details of the Genstat syntax, including:
• Genstat commands, and the roles of their options and parameters;
• how names of directives, procedures, options and parameters can be shortened;
• how to repeat a command;
• how to use the substitution symbol # to insert the values of a data structure into a

command;
• how to use progressions, pre- and post-multipliers to specify lists more efficiently;
• suffixed identifiers and pointers;
• unnamed data structures;
• the model formulae that are used to define statistical models.

3.1 Syntax of commands

Genstat commands, or statements as we prefer to call them, all have the form:
statement-name [option-settings] parameter-settings :

The statement-name gives the name of the directive or procedure that is to be used, and
the terminating colon (:) can be omitted if the statement is at the end of a line.
Conversely, if you want to continue a statement onto the next line, you can end the line
with a continuation symbol \.

Parameters specify parallel lists of arguments for the directive or procedure. For
example

PRINT STRUCTURE=name,pay,hours,rate; DECIMALS=0,2,0,2

would print name and hours with no decimal places, and pay and rate with two. The
list for the first parameter of the directive or procedure must be the longest; for PRINT
this is the parameter STRUCTURE. Other parameters provide ancillary information and
they will be recycled if they are shorter than the first. So, for example, you could write
just

PRINT STRUCTURE=name,pay,hours,rate; DECIMALS=0,2

A warning is printed if any of the other parameters is longer than the first.
Options specify settings that apply to all the (parallel) sets of parameters. For example,

if you were to put

PRINT [CHANNEL=2] STRUCTURE=name,pay,hours,rate; \
 DECIMALS=0,2

then name, pay, hours, and rate would all be printed to the output file on channel 2
(with their attendant numbers of decimal places). Most options have default values,
chosen to be those most often required, and so usually they need not be specified. For
example, here are all the options of PRINT.

CHANNEL = identifier Channel number of file, or identifier of a text to store
output; default current output file

SERIAL = string token Whether structures are to be printed in serial order, i.e. all
values of the first structure, then all of the second, and so
on (yes, no); default no, i.e. values in parallel

26 3 Syntax

IPRINT = string tokens What identifier and/or text to print for the structure
(identifier, extra, associatedidentifier),
for a table associatedidentifier prints the
identifier of the variate from which the table was formed
(e.g. by TABULATE), IPRINT=* suppresses the identifier
altogether; default iden

RLPRINT = string tokens What row labels to print (labels, integers,
identifiers), RLPRINT=* suppresses row labels
altogether; default labe, iden

CLPRINT = string tokens What column labels to print (labels, integers,
identifiers), CLPRINT=* suppresses column labels
altogether; default labe, iden

RLWIDTH = scalar Field width for row labels; default 13
INDENTATION = scalar Number of spaces to leave before the first character in the

line; default 0
WIDTH = scalar Last allowed position for characters in the line; default

width of current output file
SQUASH = string token Whether to omit blank lines in the layout of values (yes,

no); default no
MISSING = text What to print for missing value; default '*'
ORIENTATION = string token How to print vectors or pointers (down, across); default

down, i.e. down the page
ACROSS = scalar or factors Number of factors or list of factors to be printed across the

page when printing tables; default for a table with two or
more classifying factors prints the final factor in the
classifying set and the notional factor indexing a parallel
list of tables across the page, for a one-way table only the
notional factor is printed across the page

DOWN = scalar or factors Number of factors or list of factors to be printed down the
page when printing tables; default is to print all other
factors down the page

WAFER = scalar or factors Number of factors or list of factors to classify the separate
"wafers" (or slices) used to print the tables; default 0

PUNKNOWN = string token When to print unknown cells of tables (present,
always, zero, missing, never); default pres

UNFORMATTED = string token Whether file is unformatted (yes, no); default no
REWIND = string token Whether to rewind unformatted file before printing (yes,

no); default no
WRAP = string token Whether to wrap output that is too long for one line onto

subsequent lines, rather than putting it into a subsequent
"block" (yes, no); default no

STYLE = string token Style to use for an output file (plaintext,
formatted); default * uses the current style of the
channel

PMARGIN = string tokens Which margins to print for tables (full, columns,
rows, wafers); default full

OMITMISSINGROWS = string tokens
Whether to omit rows of tables that contain only missing
values (yes, no); default no

VSPECIAL = scalar or variate Special values to be modified in the output
TSPECIAL = text Strings to be used for the special values; must be set if

3.1 Syntax of commands 27

VSPECIAL is set

As you have seen from the examples in Section 1.3, most of these do not usually need to
be specified. However, they provide considerable flexibility of output when you want it,
particularly for printing multi-way structures such as tables. Some parameters also have
defaults. Here are the parameters of PRINT.

STRUCTURE = identifiers Structures to be printed
FIELDWIDTH = scalars Field width in which to print the values of each structure

(a negative value -n prints numbers in E-format in width
n); if omitted, a default is determined (for numbers, this is
usually 12; for text, the width is one more character than
the longest line)

DECIMALS = structures Number of decimal places for numerical data structures, a
scalar if the same number of decimals is to be used for all
values of the structure, or a data structure of the same type
and size to use different numbers of decimals for each
value; if omitted or set to a missing value, a default is
determined which prints the mean absolute value to 4
significant figures

CHARACTERS = scalars Number of characters to print in strings
SKIP = scalars or variates Number of spaces to leave before each value of a structure

(* means newline before structure)
FREPRESENTATION = string tokens

How to represent factor values (labels, levels,
ordinals); default is to use labels if available,
otherwise levels

JUSTIFICATION = string tokens
How to position values within the field (right, left,
center, centre); if omitted, right is assumed

MNAME = string tokens Name to print for table margins (margin, total,
nobservd, mean, minimum, maximum, variance,
count, median, quantile); if omitted, "Margin" is
printed

DREPRESENTATION = scalars or texts
Format to use for dates and times (stored in numerical
structures)

HEADING = texts Heading to be used for vectors printed in columns down
the page; default is to use the information requested by the
IPRINT option

TLABELS = texts If this is specified for a table STRUCTURE, the values of
the table are interpreted as references to lines within the
TLABELS text that are to be printed instead of the values
of the table itself

Again, we have been able to obtain very acceptable output in previous examples using
the default settings, such as 12 for the FIELDWIDTH for variates, and right for
JUSTIFICATION.

28 3 Syntax

The settings of options and parameters are either lists, expressions, or formulae, and
each setting should be separated from the next (if any) by a semi-colon (;). A list is a
sequence of items, each separated from the next by a comma. Expressions are used to
define calculations, as discussed in Chapter 5, and formulae to define statistical models,
as discussed in Section 3.9.

Lists may be of numbers, as with the VALUES option in

VARIATE [VALUES=0,5,14,2.3E1,3,8,0,2,8] rain

Numbers in Genstat can be represented in either ordinary or "scientific" format.
There are also lists of textual strings, which are used for one of two purposes. Some

options and parameters expect you to specify string tokens chosen from a defined list of
possibilities: for example, the SERIAL option can be set to either yes or no. These
options and parameters all have default settings. You can use the special character hash
(#) to represent the default of an option if you want to add additional settings. So, we
could put

RLPRINT=#,integers

instead of

RLPRINT=labels,integers,identifiers

as the default is

RLPRINT=labels,identifiers

String tokens can always be abbreviated to four characters. So, to save space, you will see
that we only specify four for the defaults in the syntax definitions. (The full rules for
abbreviations like these are given in Section 3.3.)

Other options and parameters, like the VALUES option of the TEXT directive, allow you
to specify arbitrary strings: for example

TEXT [VALUES='Last Sunday',Monday,Tuesday,Wednesday,\
 Thursday,Friday,Saturday,Sunday] day

In general, these arbitrary strings are enclosed in single quotes ('). However, in a string
list, the quotes can be omitted provided the string starts with a letter, and then contains
only letters and/or digits. A letter in Genstat is any of the capital letters A to Z, or the
lower case letters a to z, or the underscore character (_), or percent (%), while a digit is
one of the numerical characters 0 up to 9. (Note, though, the string tokens in Genstat are
defined so that they always start with a letter and contain only letters and/or digits, so you
will never need to put them inside quotes.)

If you have a line break inside a quoted string, Genstat terminates the current string,
and then begins a new one on the next line. So

'These are the last
words I have to say'

is the same as

'These are the last','words I have to say'

If you want to continue a string on the next line, you must give a continuation character
(\).

You can include any characters inside a quoted string but, if you want to include a
single quote ('), a double quote (") or a continuation character (\), you must put them
twice. Otherwise a single quote on its own would terminate the string, a double quote

3.2 Making lists more compact 29

would begin a comment (so all the following characters would be ignored until the next
double quote), and a continuation character would continue the string onto the next line.

Finally, there are lists of identifiers, as in the STRUCTURE parameter of PRINT: for
example

PRINT STRUCTURE=name,pay,hours,rate

An identifier is the name given to a data structure. It must start with a letter and then
contain only letters or digits. Only 32 characters are stored, so
satotal_software_sales_in_January_2008 will not be distinguished from
total_software_sales_in_January_2009 (both will be stored as
total_software_sales_in_January_). However, upper case is distinguished from
lower case, so SALES and Sales are not the same. (It is possible to change this using the
SET directive, but this is not customary. You can also use SET to request that Genstat
stores and checks only the first eight characters of identifiers, as was the case in the
Fourth and earlier Editions.) Identifiers can also have suffixes, enclosed in square
brackets: for example x[2] or employee['grade']. These are explained in Section
3.7.

Any list may contain missing values, each represented by an asterisk (*). These
represent unknown (or unset) information.

You can put comments anywhere in a statement, or between two statements.
Comments begin and end with the double-quote character ("); between the quotes you
can type anything you like.

3.2 Making lists more compact

The values of any data structure can be substituted into a list of the appropriate type,
using the substitution symbol hash (#). So, for example, values of variates can be
substituted into number lists:

VARIATE [VALUES=1,2,3,4] x
VARIATE [VALUES=#x,#x] xx

gives xx eight values (1,2,3,4,1,2,3,4).
Similarly, values of texts can be substituted into lists of strings. For example, in

TEXT [VALUES=data,errors] pde
READ [PRINT=#pde] day,rain

the PRINT option of READ is given the setting data,errors.
Lists of numbers that increase or decrease in a regular way can be represented

conveniently in Genstat as progressions. These have the general form

x, y ... z

where x is the first number, y the second number, and z the final limit. You can put spaces
anywhere within this construct except within the sequence of three dots (...). The
progression generates a sequence of numbers:

x, x + s, x + 2s as far as x + ks

where s is the difference between y and x (so x + s = y) and k is the largest integer such
that x + ks does not go beyond z. The step can be either positive or negative and need not
be an integer. If the step is 1 or !1, the second number y can be omitted. For example

30 3 Syntax

1...5 = 1,2,3,4,5
5...1 = 5,4,3,2,1
2,4...10 = 2,4,6,8,10
2,(4...10) = 2,4,5,6,7,8,9,10

Notice that the progression in the final example must be placed in brackets to make it
clear that the second number has been omitted.

Lists of numbers, strings, or identifiers that are repeated in a regular way can be
compacted using multipliers.

A pre-multiplier precedes a bracketed list and repeats the individual elements of the
list, in turn, a specified number of times. For example

3(1,2) = 1,1,1,2,2,2

Post-multipliers come after a bracketed list of numbers and repeat the entire list, en
bloc, the specified number of times. For example

(day,temp,rain)2 = day,temp,rain,day,temp,rain

They may be combined. For example

2((1...3)2,4) = 1,1,2,2,3,3,1,1,2,2,3,3,4,4

You can use scalars as pre-multipliers or post-multipliers but you must also use a
substitution symbol

SCALAR [VALUE=3] nplot
FACTOR [LEVELS=4; VALUES=#nplot(1),(2,3,4)#nplot] block

gives block the values

1,1,1, 2,3,4, 2,3,4, 2,3,4

3.3 Practical

Use the VARIATE directive to define variates a - g holding the following sets of numbers:
a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
b 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
c 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23
d 2.2, 3.4, 4.6, 5.8, 7, 8.2, 9.4, 10.6, 11.8, 13, 14.2, 15.4
e 1.5, 1.5, 9, 9, 11, 11, 3.3, 3.3, 6, 6, 2, 2
f 1.5, 9, 11, 3.3, 6, 2, 1.5, 9, 11, 3.3, 6, 2
g 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4

Print their values in parallel, in the Output window, with enough decimal places to display
all the significant figures of each one.

3.4 Abbreviation rules

Names of directives, options, parameters, and functions (see Section 5.1) are known as
system words, and these can always be abbreviated to four characters. If more than the
minimum number of characters is given for any system word, they will be checked as far
as the 32nd; characters from the 33rd onwards are ignored. Names of procedures in the
standard Genstat library are defined so that they too can be abbreviated to four characters.
Names of user-defined procedures are required to differ only in the first eight characters
(although Genstat does give a warning if you define a name whose first four characters

3.4 Abbreviation rules 31

are the same as an existing procedure). So, unless you are using procedures only from the
standard Genstat library, it may be safer to give eight characters for their names.

Option and parameter names can usually be abbreviated even further. For every
directive or procedure, an implicit order is defined for its options and for its procedures.
For PRINT, as shown above, the ordering of the parameters is STRUCTURE,
FIELDWIDTH, DECIMALS, CHARACTERS, SKIP, FREPRESENTATION, JUSTIFICATION,
MNAME, DREPRESENTATION, HEADING and TLABELS. The rule is that you need specify
only sufficient letters to distinguish each parameter from the parameters that occur before
it in this (implicit) list. Above we have printed the minimum form for each one in bold
letters; so for example you can abbreviate FIELDWIDTH to F, as this is preceded only by
STRUCTURE, but SKIP requires the two letters SK. However, as already mentioned, if you
are uncertain about the ordering for a particular directive, it is always sufficient to specify
four characters.

This abbreviation rule also applies to string tokens. Thus, for example,

READ [PRINT=data,errors] day

can be written as

READ [PRINT=d,e] day

(The READ directive, which reads values into data structures, is described in Section 4.1.)
An option or parameter name may be omitted altogether, along with its accompanying

equals sign, if Genstat can deduce it from the position of the setting within the statement.
In the statement

PRINT [CHANNEL=2; SERIAL=yes] \
 STRUCTURE=name,pay,hours,rate; DECIMALS=0,2

you can leave out CHANNEL= as CHANNEL is the first option of PRINT: unless you say
otherwise (by giving the option name explicitly), Genstat assumes that the first option
setting in a statement is for the first option in the implicit ordering for the directive (or
procedure). Similarly, as STRUCTURE is the first parameter of PRINT, you can also omit
STRUCTURE=, to obtain

PRINT [2; SERIAL=yes] name,pay,hours,rate; DECIMALS=0,2

For subsequent options (and parameters), Genstat looks to see which option (or
parameter) comes after the current one in the implicit ordering. Thus, after CHANNEL
Genstat would expect by default to find SERIAL; as our statement also has SERIAL
straight after CHANNEL, this can be omitted too.

PRINT [2; yes] name,pay,hours,rate; DECIMALS=0,2

You can include null settings in a statement by typing nothing (other than spaces or
comments or continuation symbols) between two semi-colons. If you insert a null setting
for FIELDWIDTH, Genstat will then be able to deduce that our third parameter setting is
for DECIMALS and so you can simply put

PRINT [2; yes] name,pay,hours,rate; ; 0,2

Again this does require you to know the implicit ordering for the directive or procedure,
but it can save a great deal of typing as you get to know Genstat better.

32 3 Syntax

3.5 Repeating a statement

The repetition symbol & provides a very convenient way of repeating a statement. It
terminates the previous statement, if necessary, and then repeats the name of the
statement together with any options that were set. So, for example, you could type the
statements

READ [CHANNEL=2] year : READ [CHANNEL=2] day,temp

as

READ [CHANNEL=2] year & day,temp

You can also modify the options by including further settings after &. Thus

READ [CHANNEL=2] year
READ [CHANNEL=2; SERIAL=yes] day,temp
READ [CHANNEL=3; SERIAL=yes] sunshine,windspeed

can be simplified to

READ [CHANNEL=2] year
& [SERIAL=yes] day,temp
& [CHANNEL=3] sunshine,windspeed

3.6 Practical

Below we show a rather verbose Genstat program, stored as Shop.gen. Run the program
to see what output it gives.

TEXT [NVALUES=11] branch
VARIATE [NVALUES=11] sales01,sales02
VARIATE [NVALUES=11] frontage,depth
READ [PRINT=data,errors,summary] branch, sales01, sales02,\
 frontage, depth
Ashford 4741100 496700 25 33
Bradford 3386800 350100 21 32
Chelmsford 645800 395200 15 22
Dartford 2381200 298900 12 28
Fordingbridge 1379600 412000 12 25
Guildford 2727300 234700 16 26
Hereford 2993300 358500 14 32
'Milford Haven' 3409000 460600 18 24
Oxford 4752400 439100 15 30
Stafford 4117400 473700 16 28
Twyford 942500 294900 12 16 :
CALCULATE [PRINT=*] sales01 = sales01/100
CALCULATE [PRINT=*] sales02 = sales02/100
CALCULATE [PRINT=summary] allsales = sales01 + sales02
CALCULATE [PRINT=summary] sale_pm2 = \
 allsales / 2 / (frontage * depth)
PRINT [SERIAL=no] branch,frontage, depth,allsales, sale_pm2;\
 DECIMALS=0,0,0,0,2; JUSTIFIC=left,right,right,right,right

Modify the program to become as compact as possible, by using abbreviations but not by
removing spaces and new lines. Run it again to check that it still works.

3.5 Suffixed identifiers and pointers 33

3.7 Suffixed identifiers and pointers

Lists of data structures can be stored in a Genstat pointer structure to save having to type
the list in full every time it is used. For example

POINTER [VALUES=rain,temp,windspeed] vars
VARIATE #vars
READ [CHANNEL=2] #vars
PRINT #vars; DECIMALS=2,1,2

defines rain, temp, and windspeed to be variates, and then reads and prints their
values. When none of the structures in the list is itself a pointer, the substitution symbol
(#) works in the same way as with variates and texts. If, however, there are pointers in
the list, they too are substituted, as are any pointers to which they point.

You can also refer to the elements of pointers using suffixes. For example, you can
refer to rain either using its own identifier, or as the first element of vars by using the
suffix [1]: so

vars[1] is rain
vars[2] is temp
vars[3] is windspeed

Furthermore, you can put a list within the brackets:

vars[3,1] is windspeed,rain.

Also, you can put a null list to mean all the available suffixes of the pointer:

vars[] is rain,temp,windspeed.

Identifiers like vars[1], vars[2], and vars[3] are called suffixed identifiers and,
in fact, you can use these even without defining the identifier of the pointer explicitly.
Whenever a suffixed identifier is used, Genstat automatically sets up a pointer for the
unsuffixed part of the identifier if it does not already exist. Furthermore the pointer will
usually be extended automatically (whether it has been set up by you or by Genstat) if you
later use a new suffix, like vars[93] for example. If, however, you do not want this to
happen, you should define the pointer explicitly and set option FIXNVALUES=yes. For
example

POINTER [VALUES=length,width,height; FIXNVALUES=yes]\
 dimensions

The SUFFIXES option of the POINTER directive allows you to specify the required
suffixes for pointers that are defined explicitly. Notice that the suffixes do not need to be
a contiguous list, nor need they run from one upwards. For example

VARIATE [VALUES=1990,1991,1992,1993] suffs
POINTER [NVALUES=4; SUFFIXES=suffs] profit

defines profit to be a pointer of length four, with suffixes 1990 to 1993.
You could actually omit the NVALUES option here as Genstat can determine the length

of the pointer by counting the number of values. However, by supplying a text instead of
a scalar for NVALUES you can define labels for the suffixes of the pointer. The length of
the text defines the number of values of the pointer, and its values give the labels. For
example

TEXT [VALUES=name,salary,grade] labs

34 3 Syntax

POINTER [NVALUES=labs] employee

would allow you to refer to employee['name'], employee['salary'], and so on.
Lower and upper-case labels are distinguished, unless you set option CASE=ignored in
the POINTER statement. You can also set option ABBREVIATE=yes, to allow the labels
to be abbreviated. (By default, CASE=significant and ABBREVIATE=no.) So, if you
had specified

POINTER [NVALUES=labs; CASE=ignored; ABBREVIATE=yes]\
 employee

you would be able to refer to employee['name'], for example, as employee['n']
or employee['Name'].

3.8 Unnamed data structures

It can be wasteful and tedious to set up a structure explicitly when it is needed only once
in a program. So Genstat allows you to define an unnamed structure instead. Some
particularly useful types of unnamed structures are described below.

The unnamed scalar is just a number. Whenever Genstat expects the identifier of a
scalar, a number may be given instead. In fact, you have been using this type of unnamed
structure already: the statement

VARIATE [NVALUES=10] x

is equivalent to

SCALAR [VALUE=10] n
VARIATE [NVALUES=n] x

However, the converse, that you can use a scalar instead of a number, is not always true.
The exception is with pre-multipliers and post-multipliers when, as mentioned in Section
3.7, the scalar must be preceded by the substitution symbol (#).

The other forms all have a common style: they start with an exclamation mark, then a
type code, and then a list enclosed in round brackets. An unnamed variate takes the form

!V(list of numbers)

where the letter V can be in either upper or lower case, or equivalently

!(list of numbers)

For example

GRAPH rain; !(1...8)

plots rain against day number, 1 to 8.
The unnamed text takes one of two forms. If the text has a single value, then the value

can be placed within quotes (') and used instead of the identifier of the text. For
example:

GRAPH [TITLE='Rainfall during my holiday'] rain; !(1...8)

If there are several values, the form is

!T(list of strings)

where the letter T can be in either upper or lower case. For example:

PRINT !t(Sat,Sun,Mon,Tues,Wed,Thur,Fri,Sat),rain

3.9 Practical 35

The unnamed pointer has the form

!P(list of identifiers)

where, again, the letter P can be in either upper or lower case.
There are also unnamed expressions (type code E), and unnamed formulae (type code

F). Finally, type code S provides another way to specify an unnamed scalar.
Unnamed structures are particularly useful when assigning values to several structures.

The directives that are used to declare data structures all have a parameter as well as an
option to specify the values of the structures that are defined. (This is one of the few
places in the Genstat language where a directive has both an option and a parameter with
the same name.) So you can use the VALUES parameter of VARIATE to specify different
sets of values for x and y, as follows:

VARIATE x, y; VALUES=!(1,2,3), !(4,5,6)

x now contains the values 1, 2, and 3, and y contains 4, 5, and 6.

3.9 Practical

The first of April 2000 was a Saturday. Using unnamed structures, write a PRINT
statement to print the day numbers in the month, with the day of the week and the week
number side by side:

1 Saturday 1
2 Sunday 2
3 Monday 2

Using the unnamed structures from your program, create a variate to hold the day
numbers, a variate to store the week number and a text to store the day of the week.
Create a pointer using the POINTER directive to point to the three data structures, and
print the contents of the pointer to the Output window.

3.10 Formulae to define statistical models

Statistical models for analyses like regression, analysis of variance and the analysis of
linear mixed models by REML are defined in Genstat by model formulae. Many of the
menus of Genstat for Windows define these automatically. However, to use commands
or the more advanced menus you will need to specify your own formulae.

In its simplest form, a model formula is a list of model terms, linked by the operator
"+". Each term defines a set of parameters to be fitted in a statistical model. For example,
if we have factors N and S, the formula

N + S

specifies two terms representing the main effects of the factors.
You can use commas in lists of factors or variates instead of pluses. So, for example,

we could specify a multiple linear regression involving variates X and Y by either

X + Y

or

36 3 Syntax

X, Y

(see Section 6.3 for examples).
Higher-order terms, like interactions, are specified as series of factors separated by

dots, but their precise meaning depends on which other terms the formula contains, as we
explain below.

The other operators provide ways of specifying a formula more succinctly, and of
representing its structure more clearly.

The crossing operator * is used to specify factorial structures. The formula

N * S

is used to specify the two-way analysis of variance described in Section 7.1, where the
factors represent amounts of nitrogen and sulphur treatments applied in a field
experiment. This is expanded to become the formula

N + S + N.S

which has three terms: N for the nitrogen main effect, S for the main effect of sulphur,
and N.S for the nitrogen by sulphur interaction. Higher-order terms like N.S represent
all the joint effects of the factors N and S that have not been removed by earlier terms in
the formula. Thus here it represents the interaction between nitrogen and sulphur as both
main effects have been removed. See Section 3.1 of the Guide to Anova and Design in
Genstat for a more detailed explanation.

The other most-commonly used operator is the nesting operator (/). This occurs most
often in the block formulae that define the random terms for an analysis of variance. For
example, the formula

block / plot

is expanded to become the formula

block + block.plot

As the formula contains no "main effect" for plot, the term block.plot would
represent plot-within-block effects (that is the differences between individual plots after
removing any overall similarity between plots that belong to the same block). Section 7.4
uses this model to analyse a randomized block design.

A formula can contain more than one of these operators. The three-factor factorial
model

A * B * C

becomes

A + B + C + A.B + A.C + B.C + A.B.C

and the nested structure

block / wplot / subplot

which occurs as the block model of a split-plot design (Section 7.7) becomes

block + block.wplot + block.wplot.subplot

They can also be mixed in the same formula. For example, the factorial-plus-added-
control study in Section 3.5 of the Guide to Anova and Design in Genstat has treatment
structure

Fumigant / (Amount * Type)

3.10 Formulae to define statistical models 37

which expands to

Fumigant + Fumigant.Amount + Fumigant.Type +
Fumigant.Amount.Type

In general, if l and m are two model formulae:

l * m = l + m + l.m

l / m = l + fac(l).m

(where l.m is the sum of all pairwise dot products of a term in l and a term in m, and
fac(l) is the dot product of all factors in l). For example:

(A + B) * (C + D) = (A + B) + (C + D) + (A + B).(C + D)

 = A + B + C + D + A.C + A.D + B.C + B.D

(A + B)/C = A + B + fac(A + B).C = A + B + A.B.C

The dot, plus, star and slash operators cover most situations, but there are also a few
more-specialized operators. This is the full list, in order of precedence i.e. in the order in
which they are evaluated if they occur together in the same formula:
(1) , (comma) used within lists of factors or variates,
(2) . (dot) defines higher-order terms,
(3) // (double slash) indicates pseudo-factor relationships (see Guide to

the Genstat Command Language, Part 2 Statistics,
Section 4.7.3),

(4) / (slash) defines nested structures,
(5) * (star) defines factorial structures,
(6) + (plus) adds terms into a formula,

! (minus) removes terms from a formula,
!/ (minus slash) removes higher-order terms

(e.g. m -/ F removes any higher-order term
involving F from the formula m),

!* (minus star) removes terms and higher-order terms
(e.g. m -* F removes F and any higher-order term
involving F from the formula m).

Within each class, operations are done from left to right within the formula.
There are also several functions that can be used to define contrasts like polynomials.

These are explained in the Guide to the Genstat Command Language, Part 2 Statistics,
Sections 3.4 and 4.5.

4 Input and output

In this chapter you will learn about:
• the READ directive, which reads data values from lines of text into any Genstat data

structure;
• the FILEREAD procedure, which reads data from a text file into variates, factors or

texts;
• the SPLOAD procedure, which reads Genstat spreadsheets;
• the FSPREADSHEET procedure, which writes Genstat spreadsheets;
• the IMPORT procedure, which reads data from other spreadsheets, statistical

systems, databases etc;
• the EXPORT procedure, which writes data to files for other spreadsheets, statistical

systems, databases etc;
• the CAPTION directive, which provides titles for output.

4.1 Reading data from text files

Genstat can read many different types of data file. These include text, spreadsheet and
database files, as well as files in the formats of many other statistical systems. In Genstat
for Windows, data files can be read most easily by using the Open option of the File menu,
as mentioned in Section 2.1. (This is the standard WindowsTM approach.) Opening a
spreadsheet or database file in this way loads the data into a Genstat spreadsheet within
the client for viewing and/or editing. When you change the focus away from the
spreadsheet window, the client passes the data across to the server by writing scripts of
commands that use the READ directive. So, for example, READ was used when the data
were read from the spreadsheet file Nematode.gsh in Chapter 2.

These two commands read data values into a variate Sepal_Length.

VARIATE [NVALUES=150] Sepal_Length
READ Sepal_Length
5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9
5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1 5.7 5.1
5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7
4.8 5.4 5.2 5.5 4.9 5.0 5.5 4.9 4.4 5.1
5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0
7.0 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2
5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6
5.9 6.1 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7
5.5 5.5 5.8 6.0 5.4 6.0 6.7 6.3 5.6 5.5
5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7
6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3 6.7 7.2
6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.0
6.9 5.6 7.7 6.3 6.7 7.2 6.2 6.1 6.4 7.2
7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6.0 6.9
6.7 6.9 5.8 6.8 6.7 6.7 6.3 6.5 6.2 5.9 :

The VARIATE command defines Sepal_Length to be a variate with 150 values. In fact
this is not strictly necessary as, if you ask READ to read data into data structure that has
not yet been declared, it will declare the data structure by default to be a variate, and
define its length from the number of values that are read. Many Genstat directives make
default declarations like this. However, it will always be safer to declare your data
structures explicitly. Genstat can then check for mistakes. In the simplest form of READ,

4.1 Reading data from text files 39

the data values come immediately after the READ statement, and are terminated by a semi-
colon. The following example reads data into a 3×3 symmetric matrix S, and then prints
it.

 2 SYMMETRICMATRIX [ROWS=3] S
 3 READ [PRINT=data,errors] S
 4 1.4 3.8 4.1 7.0 2.5 4.6 :
 5 PRINT S; DECIMALS=1

S
1 1.4
2 3.8 4.1
3 7.0 2.5 4.6

1 2 3

Notice that we have set the PRINT option of READ to "echo" the lines of data values from
the input, and to print details of any errors. The default for the option is
PRINT=errors,summary, where the summary setting gives a summary of the data that
are read. The layout of the values in the input line is completely free-format. It does not
need to match the shape of the data structure.
READ handles many different styles and formats. It can read several structures at once,

and can take data from external files. It can also read data from unformatted files and
Genstat text structures. You can find full details in Subsections 3.1.2 - 3.1.13 of the
Guide to the Genstat Command Language Part 1, Syntax and Data Management.

However, if your data are vectors (factors, variates or texts) with their values arranged
in columns in an external file, it is easier to use the FILEREAD procedure. FILEREAD is
used by Read Data From ASCII File menu, which is one of the sub-options of the Load

option of the Data menu on the menu bar of the Genstat client. So it was used to read the
iron measurements in Section 1.1. The settings that we selected in the menu in Figure 1.4
generated the command

FILEREAD [PRINT=summary,groups,comments,firstline;\
 NAME='C:/Program files/Gen17ed/Data/Iron.dat';\
 MISSING='*'; SEPARATOR=' '; MAXCATEGORY=15;\
 IMETHOD=read] FGROUPS=check

The PRINT option selects the output to display. Here we have asked for all the four

possibilities:
• to print summaries of the values read into each data structure,
• to give details of groups (i.e. about factors and their levels),
• to display any comments in the file occurring before the data, and
• to echo the first line of data in the file.
The NAME option gives the name of the file. Remember that Genstat uses the character

\ as the continuation character, to continue a command onto the next line. So, if you want
to include a \ character in a string, you need to specify it twice, as explained in Section
3.1. To simplify this in strings that represent file names, Genstat allows you to use the
character / instead of \. So we can put

'C:/Program files/Gen18ed/Data/Iron.dat'

instead of

40 4 Input and output

'C:\\Program files\\Gen18ed\\Data\\Iron.dat'

The MISSING option specifies the character used in the file to represent missing
values. In fact the character * is the default, so this option could have been omitted.
Similarly, the SEPARATOR option, which specifies the character that is used to separate
data values, could have been omitted, as the default is the space character.

Setting option IMETHOD=read tells FILEREAD to read the names of the data structures
from the file. With the default, IMETHOD=supply, they must be specified using the
IDENTIFIER parameter (which is the first parameter of the procedure). So the command
would then have become

FILEREAD [PRINT=summary,groups,comments,firstline;\
 NAME='C:/Program files/Gen18ed/Data/Iron.dat';\
 MISSING='*'; SEPARATOR=' '; MAXCATEGORY=15]
 sample,site,FE,weight; FGROUPS=check

(omitting the parameter name as it is the first parameter). When the names are read from
the file, the IDENTIFIER parameter is set by default to the identifiers that are found
there.

The FGROUPS parameter allows structures to be turned automatically into factors. The
default setting is check. If you are running Genstat interactively, FILEREAD will then
prompt for a decision about any structure where the number of distinct values is less than
or equal to the setting supplied by the MAXCATEGORY option. If you are running Genstat
in batch, all structures with these few distinct values become factors automatically.
FGROUPS can also be set to form or leave to tell Genstat explicitly whether each
structure should or should not be defined automatically as a factor.

Columns that are not defined to be factors are defined as either texts or variates,
according to whether FILEREAD finds a number or character string for that data structure
in the first record with no missing values that it finds in the file. However, you can use
the REPRESENTATION parameter to tell FILEREAD explicitly whether a data structure
should contain numbers or characters (and you must always do this if there are no units
without missing values).

There are several options that are not shown in our example. These are required less
often, but we explain them briefly below.

The END option specifies the string that will be used to denote the end of the data. The
default is the colon character (:). The end of the file will also terminate the data, so you
need specify this only if you want to stop reading data before the end.

The COMMMENTSYMBOLS option can be set to a list of single characters, in quotes. If
any of these characters is found at the start of a record, before any data has been read, that
record will be treated as a comment. By default, the double-quote symbol is the only
comment symbol, but it must appear at the start of every record to be treated as a
comment.

The SKIP option allows records at the start of the file to be skipped altogether. It can
be set either to the number of records to be skipped, or to a string, indicating that all
records are to be skipped up to and including the first record containing that string.

The ISAVE option can be set to a pointer to store the identifiers read from the file (if
IMETHOD=read) or supplied interactively (if IMETHOD=supply). Also, the IMETHOD
option has an additional setting none. With this setting, the identifiers of the data
structures can still be defined using the IDENTIFIER parameter. Alternatively, if the
ISAVE option is set but IDENTIFIER is unset, the data structures will be set up as

4.2 Practical 41

elements of the ISAVE pointer. If both ISAVE and IDENTIFIER are unset, FILEREAD
just reports on the contents of the file.

4.2 Practical

The file Bacteria.dat in the Data folder contains the lines

"Counts of bacteria and crop type, Jan-Feb 2008"
 18 pea
117 pea
 21 cereal
 7 pea
176 cereal
 85 cereal
244 cereal
 4 pea
 55 cereal
 8 pea
 73 cereal
 * pea
 3 pea
 4 pea
 40 cereal
198 cereal
123 pea
 17 pea
 74 cereal
 3 pea
 2 pea
 5 pea
 0 cereal
 4 pea
 2 pea
 10 cereal
 2 cereal
 4 cereal
 3 pea
 1 pea
 * cereal
 2 cereal
 4 pea
 1 pea
 4 cereal
 15 cereal
 1 cereal
 12 cereal
 4 pea

42 4 Input and output

Figure 4.1

 * cereal

Use FILEREAD to read the data values into a variate Counts, and a factor Crop.
Produce some summary statistics for the counts in each crop.

Now look at the file Bacteri2.dat, also in the Data folder. (Hint: you can open this
file in a text window in the Genstat client, by using the Open option of the File menu.)
How would the FILEREAD command need to change to read the data from this file
instead?

4.3 Reading data from spreadsheet files

Genstat spreadsheet files can be read very easily using the SPLOAD directive. For
example, we could have read the spreadsheet file Nematode.gsh in Chapter 2 with the
command

SPLOAD 'C:/Program files/Gen18ed/Data/Nematode.gsh'

The data would then have been read straight in to the server, and no longer have been
displayed in the client. This can be very useful if you have a very large spreadsheet, as
it can be time consuming to take the data through the client to the server. (In fact, the
client will use SPLOAD itself, instead of READ, if you select the Using fast load (Save and

Close) sub-option of the Update option of the Spread menu.)
The first parameter, FILE, gives the filename. There is also a SHEETNAME parameter

that can be used to specify which sheet to read from a multi-paged spreadsheet (see the
Guide to the Genstat Spreadsheet for more information). Finally, there is an ISAVE
parameter that can be set to a pointer to save the identifiers of the data structures that
have been read.

You will not usually need to set any of the options; for details see the on-line help.
Other spreadsheet files can be read using IMPORT. This is a very powerful procedure,

which can also, for example, read files from other statistical systems, image files and GIS
files, as well as CSV (i.e. comma-delimited) files. Here we will look only at its use for
reading variates, factors or texts from Excel spreadsheet files.

As with text files, it is easiest to read data from an
Excel file if the data values are arranged in columns
with the identifier for each column in the first row.
As an example, Figure 4.1 shows part of the file
Sulphur.xls in the Data folder. This has four
columns, with identifiers Sulphur, Windsp,
Winddir and Rain. The exclamation marks after
the names of Winddir and Rain tell IMPORT that
these must be formed into factors.

As the file contains all the information necessary
to define what data structures are to be read, the
command is very simple. We need supply only the
file name, using the first parameter (FILE). So the command is

IMPORT 'C:/Program files/Gen18ed/Data/Sulphur.xls'

By default IMPORT prints a "catalogue" of the data structures that have been read, shown

4.4 Practical 43

below. You can suppress this by setting option PRINT=*.

Loading Spreadsheet File

Catalogue of file C:\Gen18ed\Data\Sulphur.xls

Sheet Title: Sheet1
Description: Data read from d:\Program Files Gen18ed\Data\Sulphur.xls [GENSTAT
DATA]A2:D115
Sheet Type: vector

 Index Type Nval Name
 1 variate 114 Sulphur
 2 variate 114 Windsp
 3 factor 114 Winddir
 4 factor 114 Rain

This shows that IMPORT has read the data by first forming a temporary Genstat
spreadsheet file, and then importing that into the server. You can save the Genstat
spreadsheet by supplying a name (and path) for the file, using the OUTFILE option. You
could also set the option METHOD=create, if you want to form the Genstat spreadsheet
without then reading the data into the server.

Notice that IMPORT has automatically detected the range of cells that contain the data
values. It can do this in Sulphur.xls as all the other cells are empty. In more
complicated situations, you can use the CELLRANGE parameter to define the range of
cells. This is specified in a string using the standard Excel conventions. In
Sulphur.xls the top-left cell is A1, and the bottom-right cell is D115. So we would
have put CELLRANGE='A1:D115'.

As in SPLOAD, the SHEETNAME parameter specifies which sheet to read if the file has
more than one, and the ISAVE parameter can again be set to a pointer to save the
identifiers of the data structures that have been read.

If the identifiers are not in the file, you must set option IMETHOD=supply, and set the
COLUMN parameter to a text containing the names. You can put an exclamation mark at
the end of a name, as before, if you want the column to be formed into a factor. You can
also put a hash character (#) at the end if you want it to be a variate, or a dollar ($) if you
want it to be a text. In fact you can supply these final characters, on their own, to force
the column type even if the names are in the file.

So another way to read Sulphur.xls would be with the commands

TEXT [VALUES=Sulphur,Windsp,'Winddir!','Rain!'] Cols
IMPORT 'C:/Program files/Gen18ed/Data/Sulphur.xls';\
 CELLRANGE='A2:D115'; COLUMNS=Cols

Details of the other options and parameters of IMPORT are in the on-line help.

4.4 Practical

The file Traffic.xls is an Excel data file with one worksheet called counts storing one
set of data in the area B3:D43. Use the IMPORT procedure to read the data into Genstat,
converting day and month to factors. Examine the distribution of the counts using a
histogram. (Hint: use the Summarize Contents of Variates menu).

44 4 Input and output

4.5 Exporting data to files

Genstat spreadsheet files can be created using the FSPREADSHEET procedure. For
example, we could create a spreadsheet file Ispread.gsh, containing the iron
measurements from Section 4.1, by using the command

FSPREADSHEET [OUTFILE='Ispread.gsh'] sample,site,FE,weight

The OUTFILE option specifies the name (and path) of the file. If this is omitted when
Genstat is running interactively, the spreadsheet is opened as a window in the client. (It
can then be saved, later, to a file using the Save or Save as sub-options of the File menu
on the menu bar.) The data structures to put into the spreadsheet are specified by the first
parameter of the procedure, DATA. Other options and parameters allow you, for example,
to add a page to a multi-page spreadsheet, to protect columns by making them read-only,
to specify a title, or to save analysis commands. Full details are in the on-line help.

Data can be saved in other types of file using the EXPORT procedure. For example, we
could create an Excel file Ispread.xls, containing the iron measurements from Section
4.1, by using the command

EXPORT [OUTFILE='Ispread.xls'] sample,site,FE,weight

The OUTFILE option again specifies the name (and path) of the file; the file extension
xls tells EXPORT that we want to create an Excel file. The available extensions are:
.XLS for Excel, .XLSX for Excel 2007, .WQ1 for Quattro, .ODS for Open Office
Spreadsheet, .DBF for dBase, .FMT for Gauss, .SDD for SPlus, .RDA for R, .TPT for
SAS transport, .TAB for tab delimited text, .WOR for Instat, .MAT for MatLab, .ARFF for
Weka Attribute, .TXT for plain ASCII text, .CSV for comma delimited text, .TAB for tab
delimited text, .HTM for a HTML table, .RTF for Word Rich text format, .GSH for
Genstat spreadsheet, .GWB for Genstat work book, and .BMP, .EMF, .GIF, .JPG, .TIF,
.PNG or .PSD for an image file. An image file can be created either from single matrix
containing RGB colour values, or three columns of variates or factors columns
(specifying x-coordinates, y-coordinates and RGB colour values), or five columns of
variates or factors columns (specifying x-coordinates, y-coordinates and red, green and
blue colour values). The coordinate (0, 0) corresponds to the top left corner of the image,
and the y-values increase as you move down the image.

The SHEETNAME option allows you to specify the name of the sheet to add to an Excel
file, rather than using the default 'Genstat data'. The name should only contain
letters, numbers and spaces.

The METHOD option controls how EXPORT behaves when asked to overwrite an existing
file. The available settings are add, append, overwrite, prompt and fail, with a
default of prompt when running interactively, and fail when running in batch.

The data structures to put into the spreadsheet are again specified by the first parameter
of the procedure, DATA.

The COLUMNS parameter can specify names for the columns. By default, if you are
saving variates, factors or texts, their identifiers are used. The setting is a text with a
single line except for a matrix, where it should have a line for each column and also an
extra initial line if the matrix has row labels.

The PLAINNAMES option allows you to suppress the additional type information that
Genstat adds by default to the column names (! for factors, etc). Alternatively, you can
set option NONAMES=yes to suppress the names altogether.

4.6 Practical 45

These are the main options and parameters that you are likely to need. Again there are
others that allow you, for example, to add a page to a spreadsheet, to specify a title, or to
save analysis commands. Full details are in the on-line help.

4.6 Practical

Save the bacteria data from Practical 2.2 in an Excel file.

4.7 Database files

You can load into Genstat from an ODBC database using the DBIMPORT procedure, and
save data from Genstat into an ODBC database using the DBEXPORT procedure. Details
are in the on-line help.

4.8 Custom output and captions

There are several commands that you can use to construct your own output. By default,
in Genstat for Windows, this will appear in the Output window. Alternatively, you can use
the OPEN directive to open an external file for output, and the OUTPUT directive to send
subsequent output there. Also, many commands have a CHANNEL option that lets you
divert output temporarily; for example, see PRINT in Section 3.1. We will not discuss
this further here, but you can find the details in Sections 3.3 and 3.4 of the Guide to the
Genstat Command Language, Part 1 Syntax and Data Management.

The main command for output is PRINT, which was described in Section 3.1. This can
display the contents of any Genstat data structure. It can choose appropriate styles and
formats automatically, or you can set your own. For example

PRINT Sulphur,Windsp,Winddir,Rain

prints the variates and factors in the pollution data set from Section 4.3, in columns down
the page. The field width is 12 characters, and the numbers of decimal places for the
variates is chosen so that their mean of the absolute values of each variate would be
displayed to four significant figures.

 3 PRINT Sulphur,Windsp,Winddir,Rain

Sulphur Windsp Winddir Rain
0.00 14.80 W no

13.00 14.30 N no
12.00 5.50 W no
22.00 5.00 NW no
12.00 4.50 W no
6.00 4.80 NE no
2.00 4.30 E no

24.00 4.00 SE no
36.00 9.30 S no
6.00 6.30 NE no

10.00 5.80 SW yes
4.00 8.30 W yes
3.00 16.00 SW yes
7.00 15.80 W no
2.00 16.00 SW yes

46 4 Input and output

3.00 16.70 W yes
5.00 9.50 W no
6.00 9.80 W yes

13.00 12.00 W yes
49.00 4.80 N no
26.00 2.70 W no
6.00 6.50 SW no
3.00 13.50 SW yes
6.00 6.00 S yes
8.00 10.50 W yes
4.00 5.30 S no
6.00 18.00 S yes
5.00 8.50 W yes
3.00 15.00 SW yes
3.00 22.70 SW no

10.00 * yes
7.00 8.50 NW no
3.00 8.30 SW no
1.00 14.30 SW no
4.00 15.00 SW no
5.00 10.50 S no
3.00 13.80 S no
3.00 8.50 S no
3.00 6.00 SE no
5.00 16.50 S yes
3.00 7.30 SE no
1.00 9.80 NE yes
6.00 7.30 NE yes
5.00 5.50 NE yes
5.00 6.00 E no
6.00 11.30 E no

11.00 8.80 E no
2.00 8.50 SE no
3.00 8.30 SE no
3.00 14.50 SE yes
2.00 9.00 S yes
3.00 11.50 S yes
7.00 10.00 SW no
3.00 11.30 SW no
3.00 18.50 SW yes
5.00 16.00 W no

29.00 8.30 W no
14.00 13.00 NW yes
15.00 13.50 NW no
9.00 10.00 NW no

17.00 9.00 NE no
4.00 7.30 N no
7.00 5.80 E no

14.00 8.50 SE no
4.00 6.00 SE yes
5.00 8.00 SW no
3.00 7.50 S yes
3.00 10.50 SW yes
4.00 11.00 SW yes
4.00 16.00 W no
2.00 13.50 SW yes
5.00 20.20 SW no
3.00 11.50 W yes

4.8 Custom output and captions 47

4.00 15.00 W no
5.00 10.30 SW yes

33.00 7.80 W yes
28.00 6.30 N yes
13.00 6.80 SW no
5.00 10.00 SE yes

26.00 5.50 SE no
4.00 17.00 N yes
8.00 19.20 N yes
9.00 10.00 NE yes

36.00 6.00 NE no
7.00 8.80 NW no

29.00 9.30 NE yes
11.00 6.50 W no
12.00 6.80 SW no
26.00 8.80 W no
21.00 8.30 NW no
13.00 5.30 E no
9.00 10.30 SW no

24.00 13.30 S yes
19.00 7.00 E yes
14.00 20.50 NE yes
28.00 17.50 NE no
20.00 14.80 NW yes
43.00 18.50 NW no
20.00 8.30 N no
25.00 0.50 N no
1.00 7.80 NW yes

16.00 3.50 E no
31.00 4.50 NW no
38.00 3.70 SE yes
11.00 8.00 W no
5.00 11.50 SW yes
5.00 5.80 S yes
4.00 14.80 SW no

14.00 13.30 S yes
3.00 10.80 S yes
3.00 15.00 SW yes
7.00 17.20 SW yes
2.00 12.00 SW no
2.00 18.00 SW yes

As you can see, the sulphur figures are exact integers, and the wind speeds have been
recorded to only one decimal place. So it might have been more sensible to put

PRINT Sulphur,Windsp,Winddir,Rain; DECIMALS=0,1,*,*

to remove the unnecessary trailing zeros. DECIMALS is ignored when textual values, like
the factor labels, are being printed. So we could have specified anything for the third and
fourth items of the list.

Notice that factor labels are printed by default when these are available. You can print
levels instead by setting the FREPRESENTATION parameter. This would print levels for
Winddir, and labels for Rain

PRINT Sulphur,Windsp,Winddir,Rain; DECIMALS=0,1,*,*;\
 FREPRESENTATION=*,*,levels,labels

48 4 Input and output

FREPRESENTATION also has a setting ordinals, which produces the ordinal level
numbers 1, 2 etc. FREPRESENTATION is ignored for variates, so we could equally well
have typed levels, labels or ordinals for the first two elements of the list.

This describes only a few of the parameters of PRINT. A full description, with many
examples, is in Sections 3.2.1 and 3.2.2 of the Guide to the Genstat Command Language,
Part 1 Syntax and Data Management.

It might seem that a good way of producing a caption, for example Next analysis,
would be to put to display the string 'Next analysis' using PRINT i.e.

PRINT 'Next analysis'

A better way, though, is to use the CAPTION directive, which reproduces the same
caption styles that are used by the standard Genstat directives. The contents of the caption
are supplied by the first parameter, TEXT. The STYLE parameter specifies a string to
indicate the caption style:

plaintext ordinary text,
stress text to be emphasized,
minor a minor caption signifying a sub-section in the

output,
major a major caption signifying a section in the output,
meta a meta-caption to group several sections of output,
note a "note" to the user, and
status a "status" message.

The PFIRST option controls what happens before the caption is displayed, It has
settings:

page to start the caption on a new page,
dots to precede it by a line of dots (or a horizontal

"rule" if the output is in rich text, and
outprint to give either dots or a new page according to the

setting for the current output channel (see the
OUTPUT directive).

The example below displays 'Next analysis' as a major title in Genstat's rich-text
style of output, using the default font settings.

 4 CAPTION 'Next analysis'; STYLE=major

Next analysis

In Genstat's plain-text output, it would look like this

 4 CAPTION 'Next analysis'; STYLE=major

Next analysis
=============

The rich-text ouput changes automatically to take account of any changes to the font

4.9 Practical 49

settings for major captions that the user might have selected using the Fonts and Colours

tab of the Options menu in Genstat for Windows (Figure 1.13).
The rich-text output also recognises a sub-syntax, introduced by the special character

tilde (~), that allows you to generate Greek characters and mathematical symbols. In
plain-text output, character versions are given instead. For example, the string
'~{alpha}' is printed as á in rich-text, but as alpha in plain-text. So, again you do not
need to worry about how the user has configured the Output window. The rules can be
found in Section 1.4.2 of the Guide to the Genstat Command Language, Part 1 Syntax
and Data Management or in the on-line help for PRINT.

The PAGE directive moves to the top of a new page, and the SKIP directive can
generate blank lines. For example

SKIP [FILETYPE=output] 3

gives three blank lines. We need to set option FILETYPE=output, as the default action
for SKIP is to skip lines in an input file.
PRINT, CAPTION, PAGE and SKIP should handle most of the straightforward

situations. Genstat's commands for text manipulation can be used to construct more
complicated types of output; details are in Section 4.7 of the Guide to the Genstat
Command Language, Part 1 Syntax and Data Management.

4.9 Practical

Display the caption Counts of bacteria on pea and cereal crops, and then print the
bacteria data from Practical 2.2, using zero decimal places for the counts.

Figure 5.1

5 Calculations and manipulation

In this chapter we introduce the facilities for calculations and data handling in Genstat,
including:

• the CALCULATE directive, which provides the very general calculator used by the
Genstat Calculate menu;

• arithmetic calculations;
• relational and logical tests (and how Genstat represents their true or false results);
• functions for transforming and summarizing your data;
• the RESTRICT directive and SUBSET procedure, which allow you to operate on

subsets of your data values;
• the SORT directive which allows you to reorder data values.

5.1 Calculations

Calculations are done in Genstat
for Windows using the Calculate

menu, which is obtained by
selecting Calculations from the
Data menu on the menu bar. This
has buttons for all the usual
arithmetic operators, as well as
some less familiar operations,
which we will describe later in
this chapter.

A full description of the menu
is in Section 2.12 of the
Introduction to Genstat for
Windows. Here we will just use the menu to multiply two numbers together. For example,
we put the cursor into the window at the top of the menu, type 4, click the button for the
operator *, and then type 6.25. You can display the result in the output window by
checking the Display in Output box, or you can save the results in a data structure by typing
its identifier into the Save Result In box (or you can do both). In Figure 5.1 we have typed
S25 for the identifier. This will be defined as a scalar data structure (since the calculation
has generated a single number as its result), storing the value 25. Clicking on Run

produces the following output.

 2 DELETE [REDEFINE=yes] S25
 3 CALCULATE S25=4 * 6.25
 4 PRINT S25

S25
25.00

5.1 Calculations 51

The output is echoing the commands that have been written by the menu to do the
calculation and print the result. The DELETE directive in line 2 deletes S25 in case it had
already been used in this run of Genstat. The option setting REDEFINE=yes deletes any
pre-existing definition of S25, so that it can now be defined as a scalar. (If the option had
been omitted, the command would merely delete any values stored by S25). In line 3, the
calculation is done by the CALCULATE directive, and in line 4 the results are printed.
CALCULATE has a single parameter which supplies an expression to define what

calculation is to be done, and where the results are to be stored. As the directive has only
one parameter, no parameter name is defined in the syntax. So there is no possibility of
confusion between the equals character in the parameter setting (i.e. parameter-
name=expression) and the equals character in its use within the expression (e.g. S25 =
4 * 6.25).

All the usual arithmetic operators are available:
+ addition
- subtraction
* multiplication
/ division
** exponentiation (for example, X**2 stands for X2)

There are also functions and logical tests, as we describe later.
CALCULATE can operate on any numerical data structure. In the example above 4 and

6.25 were (unnamed) scalars. Notice that CALCULATE automatically declares the structure
to hold the results if it has not been declared already (or if it has just been deleted!). Thus,
as the calculation above produces a single number, S25 is automatically declared as a
scalar.

To illustrate the commands for calculations and manipulation, we will use a Genstat
program in the file Calc.gen (again in the Data folder). Instead of submitting the
commands one at a time, as in Section 1.3 (see Figure 1.18) we will submit several lines
at once. We first highlight the lines with the mouse, in the usual way. Then click on the
Submit Selection option of the Run menu on the menu bar, as shown in Figure 5.2. Notice
that this option has the short-cut key Ctrl-M (i.e. press the M key while holding down the
Ctrl key).

52 5 Calculations and manipulation

Figure 5.2

Most practical calculations are done on whole series of numbers, stored in variates in
Genstat. To show what can be done, the program uses some administrative data from a
small company, recording rates of pay and hours of work over a four-week period. Line
6 uses SPLOAD to load the data, as explained in Section 4.3. Line 9 then calculates the
wages for the first week.

 5 " Calculations on variates. "
 6 SPLOAD 'Pay.gsh'

Loading Spreadsheet File

Catalogue of file Pay.gsh

Sheet Type: vector

 Index Type Nval Name
 2 text 10 name
 3 variate 10 rate
 4 variate 10 hours1
 5 variate 10 hours2
 6 variate 10 hours3
 7 variate 10 hours4

Note: Missing indices are used by unnamed or system structures. These
store ancillary information, for example factor labels.

 7 " Calculate pay corresponding to hours worked in week 1:
 -8 notice that pay is defined automatically as a variate."
 9 CALCULATE pay = hours1 * rate
 10 PRINT name,pay,hours1,rate; DECIMALS=0,2,0,2

5.1 Calculations 53

name pay hours1 rate
Clarke 337.50 45 7.50
Innes 318.75 51 6.25

Adams 600.00 40 15.00
Jones 287.50 46 6.25

Day 250.00 40 6.25
Grey 275.00 44 6.25

Edwards 352.50 47 7.50
Baker 315.00 42 7.50

Hill 400.00 40 10.00
Foster 410.00 41 10.00

The calculation takes place for every unit of the variates: so the pay for Foster is the
appropriate value for hours1 (41) multiplied by the corresponding value of rate
(10.00).

Scalars can be included in the obvious way. in line 13, the scalar bonus is added to
every unit of the variate pay.

 11 " Calculation on a mixture of scalars and variates."
 12 SCALAR [VALUE=25] bonus
 13 CALCULATE pay1 = pay + bonus
 14 PRINT pay1,pay; DECIMALS=2,2

pay1 pay
362.50 337.50
343.75 318.75
625.00 600.00
312.50 287.50
275.00 250.00
300.00 275.00
377.50 352.50
340.00 315.00
425.00 400.00
435.00 410.00

We can also include ordinary numbers. By putting the amount of the bonus into the scalar
structure we can use it again (without having to remember its exact value) later in the
program. But if it were not needed later, we could simply put

CALCULATE pay1 = pay + 25

Genstat provides many functions for use in expressions. A concise description of each
one, in alphabetical order, is in Section 4.2 of the Reference Manual, Part 1 Summary,
which can be accessed by clicking on the Summary sub-option of the Reference Manual

option of the Help menu on the menu bar. Alternatively, a more detailed description is in
Section 4.2 of the Guide to the Genstat Command Language, Part 1 Syntax and Data
Management, which can be accessed by clicking on the Syntax and Data Management sub-
option of the Genstat Guides option of the Help menu on the menu bar.

Many functions are transformations. These produce a result that is the same type of
structure as the argument of the function. One example is the LOG10 function, which

54 5 Calculations and manipulation

transforms numbers to logarithms with base 10. So, in line 18, the command

CALCULATE logS25 = LOG10(S25)

gives a scalar result as S25 is a scalar, whereas the command

CALCULATE logpay1 = LOG10(pay1)

in line 20 generates a variate with 10 values, to match pay1.

 15 " There are many functions. Some produce a result
 -16 of the same type as the input to the function:
 -17 e.g. transform S25 and pay1 to logarithms base 10."
 18 CALCULATE logS25 = LOG10(S25)
 19 PRINT S25,logS25

S25 logS25
25.00 1.398

 20 CALCULATE logpay1 = LOG10(pay1)
 21 PRINT name,pay1,logpay1; DECIMALS=0,2,4

name pay1 logpay1
Clarke 362.50 2.5593
Innes 343.75 2.5362

Adams 625.00 2.7959
Jones 312.50 2.4949

Day 275.00 2.4393
Grey 300.00 2.4771

Edwards 377.50 2.5769
Baker 340.00 2.5315

Hill 425.00 2.6284
Foster 435.00 2.6385

These are some of the most useful transformations.

Mathematical transformations
COS(x) cosine of x, for x in radians.
EXP(x) exponent of x: ex.
LOG(x) natural logarithm of x, for x > 0.
LOG10(x) logarithm to base 10 of x, for x > 0.
SIN(x) sine of x, for x in radians.
SQRT(x) square root of x, for x $ 0.

Arithmetical transformations
ABS(x) absolute value of x: |x|.
INTEGER(x) integer part of x: [x].
MODULO(x; y) modulus of x to base y.
ROUND(x) nearest integer to x.

Statistical transformations
ANGULAR(p) the angular transformation: for a percentage p (0<p<100),

forms x = (180/ð) × arcsin(sqrt(p/100)).

5.1 Calculations 55

IANGULAR(x) the inverse of the angular transformation (result in
percentages).

ILOGIT(x) the inverse of the logit transformation (result in
percentages).

LOGIT(p) takes the logit transformation log(p/(100!p)) of the
percentages p (0 < p < 100).

NED(p) gives the Normal Equivalent Deviate, that is the value x
that leaves a proportion p (0 < p < 1) to the left of it under
the standard Normal curve; this is another transformation
for percentage data when expressed as proportions: Probit
transformation = NED+5.

NORMAL(x) the Normal probability integral: gives the probability that a
random variable with a standard Normal N(0,1)
distribution is less than x; this is the inverse of NED.

Re-ordering and combining transformations
CUMULATE(x) forms the cumulative sum of the values in x; that is, x1,

x1+x2, x1+x2+x3, and so on.
DIFFERENCE(x; s) forms the differences of the values in x; that is, xi!xi!s. If s

is omitted, first differences are formed, as for s=1
REVERSE(x) takes the values in x in reverse order.
SHIFT(x; s) shifts the values in x by s places (to the right or left

according to the sign of s). This is not a circular shift, so
some positions lose their values and are given missing
values.

Other functions produce a scalar summary of all the values in a structure. For example,
we can use the SUM function to calculate the total pay bill for all the employees.

 22 " There are also functions that produce a (scalar) summary
 -23 of the values in a structure: e.g."
 24 CALCULATE paybill = SUM(pay1)
 25 PRINT paybill; DECIMALS=2

paybill
3796.25

Here are some of the other summary functions like SUM.

MAXIMUM(x) maximum of the values in x.
MEAN(x) mean of the values in x.
MEDIAN(x) median of the values in x.
MINIMUM(x) minimum of the values in x.
NMV(x) number of missing values in x.
NOBSERVATIONS(x) number of observations (that is, non-missing values) in x.
NVALUES(x) number of values, including missing values, of x (that is,

the length of x).
SUM(x) sum of the values in x.

56 5 Calculations and manipulation

TOTAL(x) synonym of SUM.
VARIANCE(x) variance of the values in x.

Expressions can contain lists, to specify that the same calculation is to be done for several
sets of structures. For example, we can calculate the wages for the next three weeks in
one command:

CALCULATE pay2,pay3,pay4 = \
 hours2,hours3,hours4 * rate + bonus

This has the same effect as the three commands

CALCULATE pay2 = hours2 * rate + bonus
CALCULATE pay3 = hours3 * rate + bonus
CALCULATE pay4 = hours4 * rate + bonus

Notice that, if any of the lists on the right-hand side of the expression is shorter than the
list on the left-hand side, the list is re-used. So the value of Bonus is used for all three
weeks. To take a more complicated example

CALCULATE X,Y,Z = A,B,C + 1,2

is the same as the three calculations

CALCULATE X = A + 1
CALCULATE Y = B + 2
CALCULATE Z = C + 1

However, the lists on the right-hand side must not be longer than the list on the left-hand
side. This re-using of lists is general in Genstat, as explained in Section 3.1.

 26 " Calculate the pay for weeks 2, 3, and 4:
 -27 this does 3 calculations, firstly for pay2 and hours2,
 -28 then for pay3 and hours3, and then for pay4 and hours4."
 29 CALCULATE pay2,pay3,pay4 = hours2,hours3,hours4 * rate + bonus
 30 PRINT hours2,pay2,hours3,pay3,hours4,pay4; DECIMALS=0,2,0,2,0,2

hours2 pay2 hours3 pay3 hours4 pay4
41 332.50 43 347.50 42 340.00
46 312.50 48 325.00 44 300.00
40 625.00 * * 40 625.00
44 300.00 47 318.75 42 287.50
42 287.50 43 293.75 * *
45 306.25 42 287.50 43 293.75

* * 46 370.00 43 347.50
47 377.50 44 355.00 45 362.50
40 425.00 40 425.00 400 4025.00
40 425.00 42 445.00 41 435.00

Notice that a missing number of hours generates a missing result for pay. This illustrates
a general rule in calculations that, if any of the structures involved in a calculation has a
missing value in a particular unit, the result of the calculation will be missing for that
unit. So, when we now calculate the total pay for each employee over the four weeks, we
obtain a missing result if the pay is unknown for any of the four weeks.

5.1 Calculations 57

 31 " Notice, if any structure has a missing value in a particular
 -32 unit, the result of calculation is missing for that unit."
 33 CALCULATE monthpay = pay1 + pay2 + pay3 + pay4
 34 PRINT pay1,pay2,pay3,pay4,monthpay; DECIMALS=2

pay1 pay2 pay3 pay4 monthpay
362.50 332.50 347.50 340.00 1382.50
343.75 312.50 325.00 300.00 1281.25
625.00 625.00 * 625.00 *
312.50 300.00 318.75 287.50 1218.75
275.00 287.50 293.75 * *
300.00 306.25 287.50 293.75 1187.50
377.50 * 370.00 347.50 *
340.00 377.50 355.00 362.50 1435.00
425.00 425.00 425.00 4025.00 5300.00
435.00 425.00 445.00 435.00 1740.00

If you want to replace a missing value, you can use the function MVREPLACE. This has
two arguments, which are separated from each other by a semi-colon. The first specifies
the identifier of the data structure with the missing values, and the second supplies the
values that are to replace them. In our example we might assume that a value would be
missing if an employee had not been present during the week concerned, so we should
replace it by zero.

 35 " Replace the missing values by the value 0 using MVREPLACE."
 36 CALCULATE pay2,pay3,pay4 = MVREPLACE(pay2,pay3,pay4; 0,0,0)
 37 CALCULATE monthpay = pay1 + pay2 + pay3 + pay4
 38 PRINT pay1,pay2,pay3,pay4,monthpay; DECIMALS=2

pay1 pay2 pay3 pay4 monthpay
362.50 332.50 347.50 340.00 1382.50
343.75 312.50 325.00 300.00 1281.25
625.00 625.00 0.00 625.00 1875.00
312.50 300.00 318.75 287.50 1218.75
275.00 287.50 293.75 0.00 856.25
300.00 306.25 287.50 293.75 1187.50
377.50 0.00 370.00 347.50 1095.00
340.00 377.50 355.00 362.50 1435.00
425.00 425.00 425.00 4025.00 5300.00
435.00 425.00 445.00 435.00 1740.00

Expressions can also involve relational and logical tests. These produce the value 1 if the
result is true, and 0 if it is false. For example, we can use the greater-than operator (>)
to set up a variate of 0s and 1s according to whether staff are recorded as working less
than or greater than 100 hours in the fourth week.

CALCULATE odd4 = hours4 > 100

We could then use the result in the MVINSERT function to place a missing value in the
monthpay variate, since we believe this record must be wrong. This function also has
two arguments. The first is the identifier of the structure with values that need changing,

58 5 Calculations and manipulation

and the second is a variate of 0s and 1s indicating which values are to become missing
values. So the following command takes the values of monthpay, and inserts a missing
value whenever the corresponding value of odd4 is non-zero, storing the results back in
monthpay:

CALCULATE monthpay = MVINSERT(monthpay; odd4)

However, the calculation does not have to be done in two stages: in general, the
arguments of functions in Genstat expressions can themselves be expressions, as
illustrated below.

 39 CALCULATE odd4 = hours4 > 100
 40 PRINT odd4,hours4; DECIMALS=0

odd4 hours4
0 42
0 44
0 40
0 42
* *
0 43
0 43
0 45
1 400
0 41

 41 " MVINSERT puts a missing value into monthpay when hours4>100."
 42 CALCULATE monthpay = MVINSERT(monthpay; hours4>100)
 43 PRINT monthpay,hours4; DECIMALS=2,0

monthpay hours4
1382.50 42
1281.25 44
1875.00 40
1218.75 42
856.25 *

1187.50 43
1095.00 43
1435.00 45

* 400
1740.00 41

The available operators for relational tests are as follows:
== or .EQ. equality

>= or .GE. greater than or equal to
> or .GT. greater than
<= or .LE. less than or equal to
< or .LT. less than
/= or <> or .NE. not equal to
.IN. inclusion: X.IN.Vals gives result true for each

value of X that is equal to any one of the values of
Vals

.NI. non-inclusion: the opposite of .IN.

5.1 Calculations 59

There are also some logical operators that can be useful to combine the results of
expressions involving relational operators.
.AND. and: a.AND.b true if both a and b are true

.EOR. either or: a.EOR.b is true if either a or b, but not
both, is true

.OR. or: a.OR.b is true if either a or b is true

.NOT. not: .NOT.a is true for a untrue

The precedence of the operators (that is, the order in which they are evaluated if there are
several different ones in an expression) is much the same as you would expect from
ordinary arithmetic; see Section 1.6.2 of the Guide to the Genstat Command Language,
Part 1 Syntax and Data Management. However, in case of any doubt, it is safest to use
brackets ! the expression inside a pair of brackets is always evaluated first. So, for
example

CALCULATE A = 5 * 2 + 3

gives A the value 13, but

CALCULATE A = 5 *(2 + 3)

gives A the value 25.
Genstat text structures can be used in expressions, but only with the set inclusion

operators .IN. and .NI. (see above), or the string operators .EQS. (equality) and
.NES. (inequality). For example, the expression

Text1 .EQS. Text2

compares the string in each unit (or line) of Text1 with that in the corresponding unit of
Text2, giving the result true if they are identical; while

Text1 .NES. Text2

gives the result true if they differ.
When a factor occurs on the right-hand side of an expression, Genstat usually works

with its levels. The exception is when the factor occurs as the first operand of the
operators .IN. or .NI. and the second operand is a text; the factor labels are then used
instead. A factor can also occur on the left-hand side of an expression and receive the
results of a calculation; an error is reported if any of the resulting values is not one of the
levels of the factor. Two functions are provided especially for factors: NLEVELS(F)
gives the number of levels of the factor F, and NEWLEVELS(F; V) forms a variate from
the factor F, using variate V to define values for the levels.

For example, the factor Amount in Section 2.1 had three levels, 0, 1 and 2 (see Figure
2.5). The program below uses the numbers 0, 1.2 and 2.4 instead.

VARIATE [VALUES=0,1.2,2.4] Newvals
CALCULATE Newamounts = NEWLEVELS(Amount; Newvals)

60 5 Calculations and manipulation

5.2 Practical

Details are given below of numbers of personal computers sold by a shop in the months
of 2001 and the prices charged; the data are available in the spreadsheet file
Computer.gsh. Calculate and print the amount received from PC sales in each month,
and the total received over the whole year.

"month number price"
January 12 999
February 8 1150
March 21 1150
April 18 1250
May 7 1250
June 5 1250
July 6 1250
August 18 1099
September 5 1250
October 17 1250
November 13 1250
December 31 1150

5.3 Subsets of data values

When dealing with a large set of data, you often need to be able to select a subset of
values to study, either temporarily or for the remainder of a session. For example, with
the pollution data in Section 4.3, we might want to concentrate just on the rainy days and
draw a picture of the distribution of sulphur measurements.

One convenient way of doing this in Genstat is to use the RESTRICT directive. This
allows you to define a restriction on a vector (i.e. on a variate, factor or text). Once this
has been done, most commands that work with that vector will operate only on the
restricted set of units. The on-line help will tell you whether a particular command, that
operates on vectors, does take notice of restrictions. For example, the help page for
PRINT says

You can restrict any vector (variate, factor or text) to specify that only a subset of
its units should be printed. When printing in series the vectors can be restricted to
different subsets; but with parallel printing any restriction is applied to all the
vectors (and any pointers) so, if more than one vector is restricted, they must all
be restricted in the same way.

This illustrates a general convention, that a restriction on a vector will apply to all vectors
that are involved in the same operation. Also that, if an operation involves more than one
restricted vector, all the restrictions must be to the same set of units. Notice, though, that
the convention is applied in a sensible way. If you print several vectors in series, these
are printed separately, one at a time, and so they can be restricted in different ways. If
you print them in parallel, they are printed side-by-side, so any restriction must apply to
all of them.

For example, we shall use RESTRICT to print a list of the staff who worked less than
42 hours in the first week:

5.3 Subsets of data values 61

 44 " Restrict name to those working less than 42 hours in week 1."
 45 RESTRICT name; CONDITION = hours1<42
 46 PRINT name

name
Adams

Day
Hill

Foster

The general form is:

RESTRICT list of vectors; CONDITION=logical expression

where a vector can be a variate, text, or factor. The logical expression must supply a
variate of 0s and 1s, specifying which values of the vectors are to be selected in the same
way as values are specified in the MVINSERT function in the previous section. In fact, the
values do not have to be just 0 or 1: any non-zero value is taken to mean that a value is
to be in the subset.

An advantage of RESTRICT is that does not discard the restricted units. So you can
change the restriction to look at some other set of units, or you can cancel the restriction
by specifying RESTRICT with no condition.

 47 " Cancel the restriction on name."
 48 RESTRICT name
 49 PRINT name,hours1; DECIMALS=0,0

name hours1
Clarke 45
Innes 51

Adams 40
Jones 46

Day 40
Grey 44

Edwards 47
Baker 42

Hill 40
Foster 41

The .IN. and .NI. operators are particularly useful with RESTRICT. For example, we
could print the details of hours worked by Adams and Day by putting

TEXT [VALUES=Adams,Day] AD
RESTRICT Hours; CONDITION=Name.IN.AD
PRINT Name,Hours

or the details just of Adams by

RESTRICT Hours; CONDITION=Name.IN.'Adams'
PRINT Name,Hours

62 5 Calculations and manipulation

 50 " Another example: use of the .IN. operator
 -51 to print details of Adams and Day "
 52 TEXT [VALUES=Adams,Day] AD
 53 RESTRICT hours1; CONDITION=name.IN.AD
 54 PRINT name,hours1

name hours1
Adams 40.00

Day 40.00

 55 " or just the details of Adams "
 56 RESTRICT hours1; CONDITION=name.IN.'Adams'
 57 PRINT name,hours1

name hours1
Adams 40.00

 58 RESTRICT hours1

However, if we had specified

RESTRICT Hours; CONDITION=Name.EQS.'Adams'

Genstat would have reported a fault as it would be unable to do a line-by-line comparison
of the text Names (which has 10 values) and 'Adams' (which has only one).

In Genstat for Windows, you can also apply restrictions using sub-options of the
Restrict/Filter option of the Spread menu on the menu bar. These then send an appropriate
RESTRICT command to the Genstat server.

You can use the SUBSET procedure if you do want to store a subset of the units (or if
you want to use a command that does not recognise RESTRICT). Below we form a text
name42, and a variate pay42, with the names and pay in week 1 of the employees that
worked less than 42 weeks.

 59 " Form a variate with the pay in week 1, and a text with names
 -60 of the subset that worked less than 42 hours in week 1."
 61 SUBSET [CONDITION= hours1<42] name,pay1; NEWVECTOR=name42,pay42
 62 PRINT name42,pay42

name42 pay42
Adams 625.0

Day 275.0
Hill 425.0

Foster 435.0

The subset is again defined by a logical expression, which must now be specified by the
CONDITION option; units with true values (non-zero and non-missing) for the condition
are included in the subset, others are omitted.

Subsets can be formed for factors, texts and variates. Relevant attributes will also be
transferred across to the new structures but, if the subset excludes some of the levels of
a factor, a new reduced set of levels (and labels) can be requested by setting option

5.4 Practical 63

SETLEVELS=yes.
The original vectors are specified by the OLDVECTOR parameter and identifiers for the

vectors to contain the subsets are specified by the NEWVECTORS parameter. If
NEWVECTORS is not set, the OLDVECTORS are redefined to store the subsets instead of
their original values.

In Genstat for Windows, you can form subsets using the Subset menu, which can be
opened by clicking on the Subset option of the Data menu on the menu bar. This uses the
SUBSET procedure, and allows you to form a new vector for the subset. However, you
can do this for only one vector at a time.

Alternatively, you can first apply a restriction to the required subset, using sub-options
of the Restrict/Filter option of the Spread menu on the menu bar, and then clicking on the
Restricted rows sub-option of the Delete option of the Spread menu. This deletes the
unwanted rows, and then uses READ to read the subset into Genstat. You can form the
subset for several vectors at once. However, the subset replaces their original values.

5.4 Practical

Using the data on sales of personal computers in Practical 5.2, print the names of the
months when fewer than 10 were sold. Calculate the total amount received in just those
months. Do you get the same answer by using RESTRICT and SUBSET?

5.5 Sorting data

The SORT directive allows you to reorder the units of a list of vectors according to one
or more index vectors. The first parameter (OLDVECTOR) specifies the vectors whose
values are to be sorted, and NEWVECTOR supplies structures to store the sorted values.
First we sort the names and monthly pay values from the example in Section 5.1 into
alphabetic order of names.

 63 " Sort alphabetically."
 64 SORT [INDEX=name] monthpay,name; NEWVECTOR=sortpay,sortname
 65 PRINT sortname,sortpay; DECIMALS=0,2

sortname sortpay

Adams 1875.00
Baker 1435.00
Clarke 1382.50

Day 856.25
Edwards 1095.00

Foster 1740.00
Grey 1187.50

Hill *
Innes 1281.25
Jones 1218.75

The index vectors can be texts (as above), factors, or variates. They can be specified
using the INDEX option, as above, but if this is omitted, Genstat uses the first old vector.
We now sort the names and monthly pay into descending order of the amount paid. By
default, values are sorted into ascending order, but this can be changed by setting option

64 5 Calculations and manipulation

DIRECTION to descending as shown below.

 66 " Sort into descending order of monthly pay."
 67 SORT [DIRECTION=descending] monthpay,name; NEWVECTOR=sortpay,sortname
 68 PRINT sortname,sortpay; DECIMALS=0,2

sortname sortpay

Hill *
Adams 1875.00
Foster 1740.00
Baker 1435.00
Clarke 1382.50
Innes 1281.25
Jones 1218.75
Grey 1187.50

Edwards 1095.00
Day 856.25

Notice that any missing values are placed first, in ascending or descending sorting.
If the NEWVECTOR parameter is omitted, the sorted values are placed into the structures

in the OLDVECTOR parameter themselves, thereby losing the original ordering. We show
this below, at the same time as demonstrating that you can use more than one index
vector; the values are sorted first according to the rates of pay, and then, where several
people have the same rate, according to alphabetic order of names.

 69 " Sort into alphabetic order within (ascending) pay rates."
 70 SORT [INDEX=rate,name] OLDVECTOR=name,rate,monthpay
 71 PRINT name,rate,monthpay; DECIMALS=0,2,2

name rate monthpay
Day 6.25 856.25

Grey 6.25 1187.50
Innes 6.25 1281.25
Jones 6.25 1218.75
Baker 7.50 1435.00
Clarke 7.50 1382.50

Edwards 7.50 1095.00
Foster 10.00 1740.00

Hill 10.00 *
Adams 15.00 1875.00

5.6 Practical

Using the data on sales of personal computers in Practical 5.2, sort (and print) the months
according firstly to the number of PC's sold in each one, and then according to the profits
made in each.

5.7 Other manipulation facilities 65

5.7 Other manipulation facilities

There are many other facilities for data manipulation in Genstat, which we do not have
to space to describe here. We list below some of the more useful with references, in
brackets, to the relevant sections of the Guide to the Genstat Command Language, Part
1 Syntax and Data Management:

APPEND appends values of a list of vectors of the same type
(4.4.4)

STACK combines several data sets by "stacking" the
corresponding vectors (4.4.5)

UNSTACK splits vectors into individual vectors according to
levels of a factor (4.4.6)

EQUATE copies values between sets of data structures
(4.3.1)

SETRELATE compares the sets of values in two data structures
(4.3.2)

SETCALCULATE performs Boolean set calculations on the contents
of vectors and pointers (4.3.3)

TXCONSTRUCT forms a text structure by appending or
concatenating values of scalars, variates, texts,
factors or pointers; allows the case of letters to be
changed or values to truncated and reversed
(4.7.2)

The best summary of all the data manipulation commands is in Section 1.7 of the Guide
to the Genstat Command Language, Part 2 Statistics. A more detailed description, with
examples, is in Chapter 4 of the Guide to the Genstat Command Language, Part 1 Syntax
and Data Management.

6 Regression

This chapter introduces the commands for fitting regression models in Genstat, and
shows how they are used by the menus. We start with simple linear regression, where a
straight line is fitted to represent the relationship between two variables; one variable is
considered as the response variable (or y-variate) and the model predicts its mean value
given the value of the other, explanatory variable (or x-variate). We then show how you
can fit regressions with several explanatory variables, and assess which ones are really
needed in the model. Finally, we show how to fit parallel and non-parallel regressions
when you have an explanatory factor as well as an x-variate.

So, in this chapter you will learn about:
• the MODEL directive, which defines the response variate;
• the TERMS directive, which defines the maximal (i.e. most complicated) model, and

is useful when you want to study a sequence of regression models;
• the FIT directive, which does the analysis;
• how MODEL, TERMS and FIT are used by the Linear Regression menu to fit a simple

linear regression i.e. one with a single explanatory variate;
• how to use the ADD, DROP, STEP and TRY directives to modify a regression model

when you have several explanatory variates;
• how you can include factors in your regression model, to study parallel and

non-parallel regression lines.
If your main interest is in how to use the Genstat commands rather than how to use

Genstat's regression facilities, you may want to skip Sections 6.3 onwards. We will use
simple linear regression (from Section 6.1) again in Section 8.1, when we discuss how
you can mix commands with menus. However, we will not make any further use of
multiple linear regressions (Section 6.3) or parallel regressions (Section 6.5).

A comprehensive description of the regression menus is given in the Guide to
Regression, Nonlinear and Generalized Linear Models in Genstat, while full details of
the commands and the underlying statistical theory are in the Guide to the Genstat
Command Language, Part 2 Statistics, Chapter 3. These can be accessed from within
Genstat for Windows by selecting sub-options of the Genstat Guides option of the Help

menu on the menu bar.

6.1 Simple linear regression 67

Figure 6.1

Figure 6.2

6.1 Simple linear regression

Spreadsheet file Pressure.gsh (Figure 6.1) contains
recordings of the blood-pressure of a sample of 38 women
whose ages range from 20 to 80. The file can be opened
from within Genstat using the Example Data Sets menu, as
explained in Section 2.1.

We can read the data into Genstat using SPLOAD, as
explained in Section 4.3.

 2 SPLOAD 'Pressure.gsh'

Loading Spreadsheet File

Catalogue of file Pressure.gsh

Sheet Type: vector

 Index Type Nval Name
 1 variate 38 Age
 2 variate 38 Pressure

Figure 6.2 shows a plot of pressure
against age, drawn using the
command

DGRAPH Pressure; Age

(alternatively, this could be done
through the graphics wizard, by
selecting 2D Scatter Plot option of the
Graphics menu on the menu bar, as
explained in Section 3.1 of the
Introduction to Genstat for
Windows). This suggests that there is
a linear relationship between blood-
pressure and age. We will quantify
this by a linear regression model,
which specifies a line of best fit or a
regression line between the points on
the graph. It is natural here to assume
that the blood-pressure is responding

68 6 Regression

Figure 6.3

to increasing age, so we will fit a line or model to predict blood-pressure from age. The
equation of the line is

pressurei = a + b × agei + ei

where a can be interpreted as the intercept of the regression line, b as its slope and ei as
the error, or vertical distance of the ith point from the line. A regression analysis produces
estimates of the parameters a and b of this model, and also of the variance of the variable
e which is often of as much interest as the parameters. Further information about method
of estimation, and of the assumptions that are necessary, is given in Chapter 1 of the
Guide to Regression, Nonlinear Models and Generalized Linear Models.

In this section we will
show how the Linear

Regression menu uses the
regression commands to fit
models like this. The menu,
shown in Figure 6.3, is
opened by clicking on the
Linear Models sub-option of
the Regression Analysis option
of the Stats menu on the
menu bar. For a simple linear
regression like this, you just
need to put the name of the response variate Pressure into the Response Variate box,
and the name of the explanatory variate Age into the Explanatory Variate box. If we now
click on Run, the menu fits the regression using the commands

"Simple Linear Regression"
MODEL Pressure
TERMS Age
FIT [PRINT=model,summary,estimates; CONSTANT=estimate;\
 FPROB=yes; TPROB=yes] Age

The MODEL statement gives the identifier of the variate that contains the values of the

response variable (this is the variable whose behaviour is to be modelled).
TERMS is relevant when you want to explore a sequence of regression models. It

defines the maximal model, that is the most complicated model that you may want to fit.
Genstat can then define a common set of units for the regression (omitting any units that
are have missing values in the response or explanatory variates), and carry out some
initial calculations to make the process more efficient. TERMS is not really necessary here,
as we have only one model to fit. We will need it, however, in the Section 6.3 when we
investigate several explanatory variates.

6.1 Simple linear regression 69

Figure 6.4

The FIT statement specifies the explanatory
variate, and produces the analysis. When you are
using the menus, the options of the FIT
statement are defined by the boxes that are
checked in the Linear Regression Options menu
(which is obtained by clicking on the Options

button of the Linear Regression menu). Figure 6.4
shows the settings that were used for the FIT
statement above.

The PRINT option controls the output from
FIT, and is set by some of the Display boxes. The
string tokens model, summary and estimates
are actually the defaults for PRINT, so the option
could have been omitted. For clarity, though, the
menus will usually set all the options that they
control.

Options FPROB (short for FPROBABILITY) and TPROB (short for TPROBABILITY) are
set to yes when the F-probability and T-probability boxes, respectively, are checked. When
FPROB=yes, Genstat provides probabilities for variance ratios (see the Summary of
analysis below). When TPROB=yes, Genstat provides probabilities for t-statistics (see
the Estimates of parameters). The default for both options is no.

The CONSTANT option is defined by the Estimate Constant Term box, and specifies
whether the constant or intercept (a in the equation above) is included in the model. The
setting CONSTANT=estimate is the default. The alternative setting, omit, would
constrain the fitted line to pass through the origin (that is, the response will be zero when
the explanatory is zero). However, this may be unwise if the data are close to the origin,
as the analysis would still be based on the assumptions that the variability about the line
is constant for the whole range of the data, and that the relationship is linear right down
to the origin.

The output is shown below.

 4 "Simple Linear Regression"
 5 MODEL Pressure
 6 FIT Age

Regression analysis

Response variate: Pressure
Fitted terms: Constant, Age

Summary of analysis

Source d.f. s.s. m.s. v.r.
Regression 1 2647.7 2647.69 169.73
Residual 36 561.6 15.60
Total 37 3209.3 86.74

Percentage variance accounted for 82.0
Standard error of observations is estimated to be 3.95.

70 6 Regression

Estimates of parameters

Parameter estimate s.e. t(36)
Constant 63.04 2.02 31.27
Age 0.4983 0.0382 13.03

The model setting of the PRINT option gives a description of the model, listing the
response variable and the fitted terms: these are the explanatory variable and the constant
(or intercept) term.

The Summary of Analysis, produced by the summary setting of the PRINT option,
contains an analysis of variance to assess the regression. The column headed m.s. (mean
square) shows how much of the variance of the observations can be explained by the
linear dependence on age (Regression), and how much is left over (Residual). The
variance ratio (v.r.) is the ratio of the mean squares, and may be used to test formally
whether there is a significant linear relationship. As the menu has set option FPROB (i.e.
FPROBABILITY) to yes, a column of probabilities is included. The heading "F pr."
reminds you that the probabilities are calculated by assuming that the variance ratio has
an F distribution. A variance ratio as large as the one in this analysis indicates a
significant relationship at the 0.1% level of significance (corresponding to probability
0.001).

The percentage variance accounted for is a summary of how much of the variability
of this set of response measurements can be explained by the fitted model. It is the
difference between residual and total mean squares expressed as a percentage of the total
mean square. When expressed as a proportion rather than a percentage, this statistic is
called the adjusted R2; it is not quite the same as R2, the squared coefficient of correlation.
The adjustment takes account of the number of parameters in the model compared to the
number of observations.

The estimates setting displays the estimates of the parameters in the model. So, for
example, you can see that blood-pressure rises on average by 0.4983 units for each year
of age, with a standard error of 0.0382. The corresponding t-statistic is 13.03 with 36
degrees of freedom. As the menu has set option TPROB (i.e. TPROBABILITY) to yes,
a column of probabilities is included. The probability is less than 0.001, indicating that
there is a significant association between pressure and age, as we might expect from the
graph in Figure 6.2.

6.1 Simple linear regression 71

Figure 6.5

You can obtain further output from the
analysis by using the Linear Regression Further

Output menu, which is obtained by clicking on
the Further Output button of the Linear Regression

menu. In Figure 6.5, we are asking to print the
fitted values. This uses the RDISPLAY directive,
which has options PRINT, FPROBABILITY and
TPROBABILITY, just like those of FIT. The
output below is generated by the
fittedvalues setting of the PRINT option.

 7 RDISPLAY [PRINT=fittedvalues]

Regression analysis

Fitted values and residuals

Standardized
Unit Response Fitted value residual Leverage
1 82.17 77.00 1.36 0.072
2 88.19 85.97 0.57 0.028
3 89.66 94.44 -1.24 0.042
4 81.45 80.98 0.12 0.045
5 85.16 83.97 0.31 0.032
6 89.77 92.44 -0.69 0.034
7 89.11 89.95 -0.22 0.028
8 107.96 101.41 1.74 0.095
9 74.82 73.51 0.35 0.105
10 83.98 91.45 -1.92 0.031
11 92.95 86.46 1.67 0.027
12 79.51 79.99 -0.12 0.050
13 87.86 88.46 -0.15 0.026
14 76.85 76.50 0.09 0.076
15 76.93 75.00 0.51 0.090
16 87.09 83.47 0.93 0.034
17 97.55 95.93 0.42 0.050
18 92.04 97.43 -1.41 0.060
19 100.85 98.92 0.51 0.072
20 96.30 92.94 0.87 0.036
21 86.42 87.96 -0.39 0.026
22 94.16 91.45 0.70 0.031
23 78.12 78.99 -0.23 0.057
24 89.06 92.44 -0.87 0.034
25 94.58 99.92 -1.41 0.080
26 103.48 101.41 0.55 0.095
27 81.30 83.47 -0.56 0.034
28 83.71 80.98 0.71 0.045
29 68.38 73.01 -1.24 0.111
30 86.64 86.46 0.05 0.027

72 6 Regression

31 87.91 88.46 -0.14 0.026
32 86.42 91.45 -1.29 0.031
33 103.87 97.43 1.68 0.060
34 83.76 80.98 0.72 0.045
35 84.35 89.95 -1.44 0.028
36 68.64 75.00 -1.69 0.090
37 100.50 93.44 1.82 0.038
38 100.42 102.91 -0.67 0.111

Mean 87.95 87.95 0.00 0.053

The fitted values are the values predicted by the model for each observation; that is,
a + b × xi. Instead of displaying the simple residuals, ei, these values have been divided
by their standard error: the resulting standardized residuals should be like observations
from a Normal distribution with unit variance, if the assumptions made in this analysis
are valid. The leverage values indicate how influential each observation is: a large value
indicates that the fit of the model depends strongly on that observation.

The statistics that are printed in the Summary of analysis are controlled by the
SELECTION option of the FIT and RDISPLAY directives. The default for an ordinary
linear regression is to give the percentage variance accounted for and the standard error
of an individual observation (see output from the FIT statement earlier in this section).
There are several alternative statistics, but these cannot be selected from the regression
menus. However, you can give your own RDISPLAY command after fitting the regression
by the menu. For example,

RDISPLAY [PRINT=summary; SELECTION=%ss]

to print the percentage of the total sum of squares accounted for by the regression.
Alternatively, you could copy the FIT statement from the Input log, and edit it in a new
text window to rerun the original analysis, but with a different summary.

FIT [PRINT=model,summary,estimates; CONSTANT=estimate;\
 FPROB=yes; TPROB=yes; SELECTION=%ss] Age

6.1 Simple linear regression 73

Figure 6.6

Figure 6.7

Clicking on the Fitted Model

button in the Linear Regression

Further Output menu displays the fit
graphically. With a simple linear
regression, like this, we do not need
to choose the explanatory variate to
use for the x-axis. So there is no
subsequent menu; the plot just
appears, as shown in Figure 6.6.

The menu uses the RGRAPH procedure, with the statement

RGRAPH [CIPLOT=yes]

The option CIPLOT=yes provides 95% confidence limits for the fitted line. You can
change the probability for the confidence interval using the CIPROBABILITY option (but
not in the regression menus).

Clicking on the Model Checking button
in the Linear Regression Further Output

menu produces the Model Checking menu
(Figure 6.7). This uses the RCHECK
procedure to plot various graphs to check
the assumptions of the analysis visually.
The first parameter, YSTATISTIC,
indicates whether you want to plot
residuals (the default), leverage values or
Cook's statistics (a combination of the
residual and leverage information); this
is set by the Display in Graph boxes in the
menu. The second parameter
XSTATISTIC, which is set by the Type of

Graph boxes, chooses the type of graph. Full details are in the on-line help, but the default
setting composite covers the main requirements. This produces a composite display of
four of the available graphs:

• a histogram of the residuals, so that you can check that the distribution is
symmetrical and reasonably Normal,

• a plot of residuals against fitted values, so that you can check whether the residuals
are roughly symmetrically distributed with constant variance,

74 6 Regression

Figure 6.8

Figure 6.9

• a Normal plot which plots the ordered residuals against Normal distribution
statistics – if they lie roughly on a straight line, the residuals are roughly Normally
distributed, and

• a half-Normal plot which does the same for the absolute values of the residuals,
and can be more useful for small sets of data.

So to assess the fit of the linear regression of pressure on age, we need only give the
statement

RCHECK

The resulting plots are in Figure 6.8.
These indicate that the variance
seems unrelated to the size of the
observation, but that the distribution
seems to be more constrained than
the Normal: the largest residuals are
a little smaller than would be
expected from a Normal
distribution. Experience shows the
analysis is robust to small
departures from Normality.
However, we should be cautious in
interpreting the F-statistics and t-
statistics (which rely on the
assumption of Normality), if the
histogram looks very non-Normal.

One of Genstat's strengths is that
virtually anything that can be
printed as output from an analysis
can also be saved in a suitable
Genstat data structure. So you can use regression, for example, as just one part of a more
general analysis.

To save output using the Genstat
menus, you click on the Save button
in the Linear Regression menu
(Figure 6.3) to open the Linear

Regression Save Options menu
shown in Figure 6.9. The menu
accesses the most commonly-
needed components. The RKEEP
directive, which it uses, is far more
comprehensive. For example, the
menu settings in Figure 6.9 will
generate the statement below.

RKEEP RESIDUALS=Resids; FITTEDVALUES=Fitvals

6.2 Practical 75

This uses the RESIDUALS and FITTEDVALUES parameters of RKEEP to save the
residuals and fitted values in variates Resids and Fitvals. Other parameters of RKEEP
can, for example, save leverages and standard errors of the fitted values:

RKEEP RESIDUALS=Resids; FITTEDVALUES=Fitvals;\
 LEVERAGES=Levs; SEFITTEDVALUES=Sefitvals

Full details are in the Guide to the Genstat Command Language, Part 2 Statistics,
Section 3.1.4.

In the remainder of this chapter we will concentrate on the regression commands, rather
than the menus. However, you can find descriptions of how to use the menus for the later
analyses, in Chapter 1 of the Guide to Regression, Nonlinear and Generalized Linear
Models in Genstat.

6.2 Practical

An absorptiometer was used to measure the absorption of light passing through
suspensions that contained different numbers of cells. It was intended to estimate the
number of cells in future suspensions by the rapid light absorption method, so it was
decided to fit a regression of cell counts on light absorption. The data are available in the
spreadsheet file Absorb.gsh, where X is the absorptiometer reading and Y the cell count
(108/ml). This example comes from Experimentation in Biology by Ridgman (1975,
Blackie, Glasgow).

Load the data into Genstat and fit a linear regression of cell count on absorptiometer
reading.

Produce a graphical display of the regression.
Copy the FIT statement from the Input log, edit it to suppress the warnings about the

leverages of the points, and run the command again. (Hint: use the NOMESSAGES option
of FIT.)

6.3 Multiple linear regression

In multiple linear regression you have several explanatory variables. You can fit these by
specifying a list of variates, rather than a single variate, as the parameter of the FIT
directive. However, there is an extra problem, that you need to decide which ones are
needed in the model. So you need to be able to explore models, comparing alternative
variables or sets of variables, as well as to display and check the model that you finally
select. Section 1.11 of the Guide to Regression, Nonlinear and Generalized Linear
Models in Genstat shows how to do this using the Change Models menu. Below we show
the equivalent commands..

We illustrate this approach with a short set of data from a production plant, on page
352 of Applied Regression Analysis by Draper & Smith (1981, Wiley, New York).
Information was collected over 17 months on variables possibly associated with water
usage: the average temperature, the amount of production, the number of operating days
and the number of employees. The data are available in the spreadsheet file Water.gsh.
(So we can load them into Genstat using SPLOAD in the usual way.)

Before you start to explore different regression models, it is best to use the TERMS
directive to define the maximal model, that is the most complicated model that you may
want to fit. Genstat can then define a common set of units for the regression (omitting any

76 6 Regression

units that are have missing x- or y-values), and carry out some initial calculations to make
the process more efficient. Here we may want to include any of the variates Employ,
Opdays, Product or Temp. So we set the parameter of TERMS (which defines the
maximal model) to list them all; see line 4. We then start by fitting just the constant (line
5).

 2 SPLOAD 'Water.gsh'

Loading Spreadsheet File

Catalogue of file Water.gsh

Sheet Type: vector

 Index Type Nval Name
 1 variate 17 Employ
 2 variate 17 Opdays
 3 variate 17 Product
 4 variate 17 Temp
 5 variate 17 Water

 3 MODEL Water
 4 TERMS Employ,Opdays,Product,Temp
 5 FIT

Regression analysis

Response variate: Water
Fitted terms: Constant

Summary of analysis

Source d.f. s.s. m.s. v.r.
Regression 0 0.000 *
Residual 16 3.193 0.1995
Total 16 3.193 0.1995

Percentage variance accounted for 0.0
Standard error of observations is estimated to be 0.447.

Message: the following units have large standardized residuals.
Unit Response Residual

16 4.488 2.73

Estimates of parameters

Parameter estimate s.e. t(16)
Constant 3.304 0.108 30.49

You can use the following directives to modify a regression model:
• ADD adds extra terms,

6.3 Multiple linear regression 77

• DROP drops terms,
• SWITCH adds terms (if absent), or drops them (if already present),
• TRY tries potential changes one at a time and then reinstates the original model,

and
• STEP selects the best terms to add or drop.

They all have a PRINT option, like that of FIT, to control output. They each have a single
parameter to specify the modifications to the model.

Next we use TRY to help decide which explanatory variate to fit first. The parameter
lists the explanatory variates to try.

 6 TRY Employ,Opdays,Product,Temp

Changes investigated by TRY

Change d.f. s.s. m.s.
+ Employ 1 0.545 0.545
+ Opdays 1 0.025 0.025
+ Product 1 1.270 1.270
+ Temp 1 0.261 0.261
Residual of initial model 16 3.193 0.200

The PRINT option of TRY has a setting changes (in addition to those FIT), which acts
as the default, and summarizes the effect of each change. The table of changes shows
their degrees of freedom, sums of squares and mean squares. For comparison, it also has
a line showing the residual from the initial model.

Here it is clear that the best variate to add is Product. So we add Product, and then
use TRY to help decide which explanatory variate to fit next.

 7 ADD [FPROBABILITY=yes; TPROBABILITY=yes] Product

Regression analysis

Response variate: Water
Fitted terms: Constant, Product

Summary of analysis

Source d.f. s.s. m.s. v.r. F pr.
Regression 1 1.270 1.2702 9.91 0.007
Residual 15 1.922 0.1282
Total 16 3.193 0.1995

Change -1 -1.270 1.2702 9.91 0.007

Percentage variance accounted for 35.8
Standard error of observations is estimated to be 0.358.

Message: the following units have large standardized residuals.

78 6 Regression

Unit Response Residual
16 4.488 2.31

Message: the following units have high leverage.
Unit Response Leverage

2 2.828 0.27
3 2.891 0.25

Estimates of parameters

Parameter estimate s.e. t(15) t pr.
Constant 2.273 0.339 6.71 <.001
Product 0.0799 0.0254 3.15 0.007

 8 TRY Employ,Opdays,Product,Temp

Changes investigated by TRY

Change d.f. s.s. m.s.
+ Employ 1 0.563 0.563
+ Opdays 1 0.078 0.078
- Product -1 -1.270 1.270
+ Temp 1 0.289 0.289
Residual of initial model 15 1.922 0.128

The messages in the summary from ADD warn us about one large residual, and two
months with high leverage. So if this was our final model, we would have to be careful
in interpreting the results if we suspected that these two months were special in some
way.

Continuing, though, the possible changes are to add Employ, Opdays or Temp, or to
drop Product. So the changes are positive for Employ, Opdays and Temp, and negative
for Product. With positive changes, the aim is to pick the variate that has the largest
mean square, as these represent additional variation that could be included in the model.
With negative changes, the aim is to pick the variate that has the smallest mean square,
as these represent variation that could be removed from the model. As we have only just
added Product, as the best change from the previous model, it is not sensible to take
it straight out again, and in our subsequent use of change we will omit the variates that
are already in the model. The best variate to add is Employ, and we will do that next.

 9 ADD [FPROBABILITY=yes; TPROBABILITY=yes] Employ

Regression analysis

Response variate: Water
Fitted terms: Constant, Product, Employ

Summary of analysis

6.3 Multiple linear regression 79

Source d.f. s.s. m.s. v.r. F pr.
Regression 2 1.833 0.91664 9.44 0.003
Residual 14 1.359 0.09710
Total 16 3.193 0.19954

Change -1 -0.563 0.56310 5.80 0.030

Percentage variance accounted for 51.3
Standard error of observations is estimated to be 0.312.

Message: the following units have high leverage.
Unit Response Leverage

1 3.067 0.55
16 4.488 0.39

Estimates of parameters

Parameter estimate s.e. t(14) t pr.
Constant 4.60 1.01 4.55 <.001
Product 0.2034 0.0559 3.64 0.003
Employ -0.02157 0.00896 -2.41 0.030

 10 TRY Opdays,Temp

Changes investigated by TRY

Change d.f. s.s. m.s.
+ Opdays 1 0.168 0.168
+ Temp 1 0.184 0.184
Residual of initial model 14 1.359 0.097

The next variate to add is Temp.

 11 ADD [FPROBABILITY=yes; TPROBABILITY=yes] Temp

Regression analysis

Response variate: Water
Fitted terms: Constant, Product, Employ, Temp

Summary of analysis

Source d.f. s.s. m.s. v.r. F pr.
Regression 3 2.017 0.67248 7.44 0.004
Residual 13 1.175 0.09040
Total 16 3.193 0.19954

Change -1 -0.184 0.18417 2.04 0.177

Percentage variance accounted for 54.7
Standard error of observations is estimated to be 0.301.

80 6 Regression

Message: the following units have high leverage.
Unit Response Leverage

1 3.067 0.59

Estimates of parameters

Parameter estimate s.e. t(13) t pr.
Constant 3.87 1.10 3.51 0.004
Product 0.1933 0.0544 3.56 0.004
Employ -0.01968 0.00874 -2.25 0.042
Temp 0.00804 0.00563 1.43 0.177

Finally we add Opdays.

 12 ADD [PRINT=estimates,accumulated; FPROBABILITY=yes; TPROBABILITY=yes]\
 13 Opdays

Regression analysis

Estimates of parameters

Parameter estimate s.e. t(12) t pr.
Constant 6.36 1.31 4.84 <.001
Product 0.2117 0.0455 4.65 <.001
Employ -0.02182 0.00728 -3.00 0.011
Temp 0.01387 0.00516 2.69 0.020
Opdays -0.1267 0.0480 -2.64 0.022

Accumulated analysis of variance

Change d.f. s.s. m.s. v.r. F pr.
+ Product 1 1.27017 1.27017 20.49 <.001
+ Employ 1 0.56310 0.56310 9.08 0.011
+ Temp 1 0.18417 0.18417 2.97 0.110
+ Opdays 1 0.43139 0.43139 6.96 0.022
Residual 12 0.74380 0.06198

Total 16 3.19263 0.19954

The accumulated setting of the PRINT option produces an "accumulated" analysis of
variance table that summarizes all the changes that have been made. Notice that all the
additions were significant apart from Temp. However, the t-statistic for the regression
coefficient for Temp, in the table of parameter estimates, is significant showing that Temp
is needed in the final model. (The t-statistics show the effect of fitting each variate after
every other one.) This illustrates an important aspect of multiple regression: the
explanatory variates are often correlated. So the order in which you fit them can be
important. To reinforce this point, we use DROP to remove Temp from the model.

6.4 Practical 81

 14 DROP [PRINT=accumulated; FPROBABILITY=yes] Temp

Regression analysis

Accumulated analysis of variance

Change d.f. s.s. m.s. v.r. F pr.
+ Product 1 1.27017 1.27017 20.49 <.001
+ Employ 1 0.56310 0.56310 9.08 0.011
+ Temp 1 0.18417 0.18417 2.97 0.110
+ Opdays 1 0.43139 0.43139 6.96 0.022
Residual 12 0.74380 0.06198
- Temp -1 -0.44780 0.44780 7.22 0.020

Total 16 3.19263 0.19954

The F statistic for remove Temp from the model assesses the difference between a model
containing Employ, Opdays, Product and Temp, and one containing only Employ,
Opdays and Product. So it shows the effect of adding Temp to the model last. The
probability of 0.02 is the same as the t-probability, verifying that Temp really is needed
in the model. (Mathematically, an F statistic for an explanatory variate is the square of
the t-statistic for its estimate, so the two probabilities must be the same.)

With this example the conclusion is clear: all the explanatory variates are needed in the
model. However, with other data set, you may need to try several orders of fitting, and
you may end up with more than one plausible model. The RSEARCH procedure provides
ways of doing this automatically, including the ability to try all possible subsets of
explanatory variates. A full description and example is given in Section 3.2.8 of the
Guide to the Genstat Command Language, Part 2 Statistics.

6.4 Practical

Spreadsheet file Peru.gsh (in the Data folder) contains a data set recording blood
pressure and physical characteristics of some Peruvian Indians (see McConway, Jones
& Taylor 1999, Statistical Modelling using GENSTAT, Arnold, London, Section 6.2).
The aim is to see whether blood pressure, sbp, can be explained effectively by regression
models involving the physical variables. Use the TRY directive to build a model
containing up to two variables.

Can that model be improved by adding further variables?

6.5 Regression with groups

This section introduces the types of model that you can fit when you have factors in a
regression model. Suppose you have one explanatory factor and one explanatory variate.
You may then want to see how the regression line for the explanatory variate is the same
within all the groups defined by the factor. Or perhaps the slope is the same for all the
groups but the intercepts differ. Or perhaps the lines have different slopes and different
intercepts. In this section we shall use commands to do the analysis. Section 1.15 of the

82 6 Regression

Guide to Regression, Nonlinear and Generalized Linear Models shows how to do this
with menus.

We shall illustrate the possibilities using the sulphur pollution data in spreadsheet file
Sulphur.xls. from Section 4.3. First, we fit a simple linear regression on the wind
speed.

 2 IMPORT 'C:/Program Files/Gen18ed/Data/Sulphur.xls'

Loading Spreadsheet File

Catalogue of file C:\USERS\ROGER\APPDATA\LOCAL\TEMP\GENSTAT\G150D52628.GWB

Sheet Title: Sheet1
Description: Data read from C:\Program Files\Gen18ed\Data\Sulphur.xls [GENSTAT
DATA]A2:D115
Sheet Type: vector

 Index Type Nval Name
 1 variate 114 Sulphur
 2 variate 114 Windsp
 3 factor 114 Winddir
 4 factor 114 Rain

 3 MODEL Sulphur
 4 FIT [FPROBABILITY=yes; TPROBABILITY=yes] Windsp

Regression analysis

Response variate: Sulphur
Fitted terms: Constant, Windsp

Summary of analysis

Source d.f. s.s. m.s. v.r. F pr.
Regression 1 935. 934.52 9.49 0.003
Residual 111 10932. 98.48
Total 112 11866. 105.95

Percentage variance accounted for 7.0
Standard error of observations is estimated to be 9.92.

Message: the following units have large standardized residuals.
Unit Response Residual

20 49.00 3.57
98 43.00 3.88

Message: the following units have high leverage.
Unit Response Leverage

30 3.00 0.075
72 5.00 0.051
95 14.00 0.054

100 25.00 0.051

6.5 Regression with groups 83

Figure 6.10

Estimates of parameters

Parameter estimate s.e. t(111) t pr.
Constant 17.03 2.33 7.32 <.001
Windsp -0.636 0.207 -3.08 0.003

 5 RCHECK

The model checking plots produced
by the RCHECK procedure in line 5
show a very skewed distribution of
residuals (see Figure 6.10). So, we
shall try transforming the sulphur
measurements to logarithms,
f o r m i n g a n e w v a r i a t e
LogSulphur, containing the
logarithms (to base 10) of the
sulphur values.

The first value of Sulphur is
zero, so the logarithm cannot be
calculated. Invalid calculations like
these do not cause Genstat to fail.
Instead it gives a warning, and sets
the result in that unit to a missing
value.

 6 CALCULATE LogSulphur = LOG(Sulphur)

Warning 1, code CA 7, statement 1 on line 6

Command: CALCULATE LogSulphur = LOG10(Sulphur)
Invalid value for argument of function.
The first argument of the LOG function in unit 1 has the value 0.0000

 7 MODEL LogSulphur
 8 TERMS Windsp + Rain + Windsp.Rain
 9 FIT [FPROBABILITY=yes; TPROBABILITY=yes] Windsp

Regression analysis

Response variate: LogSulphur
Fitted terms: Constant + Windsp

84 6 Regression

Figure 6.11

Summary of analysis

Source d.f. s.s. m.s. v.r. F pr.
Regression 1 1.50 1.4952 10.35 0.002
Residual 110 15.89 0.1445
Total 111 17.39 0.1567

Percentage variance accounted for 7.8
Standard error of observations is estimated to be 0.380.

Message: the following units have large standardized residuals.
Unit Response Residual

98 1.633 2.68

Message: the following units have high leverage.
Unit Response Leverage

30 0.477 0.076
72 0.699 0.052
95 1.146 0.055

100 1.398 0.051

Estimates of parameters

Parameter estimate s.e. t(110) t pr.
Constant 1.1066 0.0892 12.41 <.001
Windsp -0.02557 0.00795 -3.22 0.002

 10 RCHECK

The residual plot, in Figure 6.11,
shows a much more symmetric
distribution of residuals, with no
evidence that the variance is
changing with the size of the
sulphur measurement. The plot does
show up the imprecise recording of
the sulphur measurements as
integers: the apparent diagonal lines
of points correspond to sulphur
measurements with equal values.

We will now fit a sequence of
regression models, to assess how the
regression changes according to
whether or not it was raining. Again
we will use the TERMS directive to
define the most complicated model
that we may want to fit.

The parameter of TERMS, and the
regression-fitting directive (FIT,
ADD etc.) is actually a model formula. A full definition of model formulae is given in

6.5 Regression with groups 85

Section 3.9, so we give only a brief description here. However, they enable much more
complicated models to be defined than the simple and multiple linear regressions in
Sections 6.1 and 6.3.

In its simplest form, a model formula is a list of model terms separated by the operator
+. Each model term specifies a set of parameters in a statistical model. It may be a single
variate (representing a regression coefficient) or a factor (representing a set of main
effects). Alternatively, it may consist of several variates and/or factors separated by the
operator dot (.), and define a higher-order term like an interaction. Commas can be used
instead of pluses if the model terms are all single variates (and/or single factors). So we
could have put

TRY Employ + Opdays + Product + Temp

instead of

TRY Employ,Opdays,Product,Temp

in Section 6.3.
The other operators provide ways of specifying a formula more succinctly, and of

representing its structure more clearly. Crossed (or factorial) relationships can be
specified by the star operator (*). The formula

Windsp * Rain

in line 8, is expanded by Genstat automatically to become

Windsp + Rain + Windsp.Rain

So we could have achieved exactly the same effect by specifying

TERMS Windsp + Rain + Windsp.Rain

in line 8.
The regression directives all have an option, FACTORIAL, which can be used to specify

the maximum order (that is, number of factors and/or variates) in the terms to be fitted
in the analysis; the default is 3.

Fitting Windsp in line 9 has given a single regression line, as usual. Adding the main
effect of the factor Rain, in line 10 below, will change the model so that there is a
different intercept (i.e. constant) for each level of Rain. Finally, adding the interaction
Windsp.Rain, in line 13, will give a different slope (i.e. regression coefficient) for each
level of Rain. So this will carry out an analysis of parallelism, going from a single line,
to parallel lines and then finally to non-parallel lines.

 11 ADD [FPROBABILITY=yes; TPROBABILITY=yes] Rain

Regression analysis

Response variate: Logsulphur
Fitted terms: Constant + Windsp + Rain

86 6 Regression

Summary of analysis

Source d.f. s.s. m.s. v.r. F pr.
Regression 2 1.89 0.9442 6.64 0.002
Residual 109 15.50 0.1422
Total 111 17.39 0.1567

Change -1 -0.39 0.3933 2.77 0.099

Percentage variance accounted for 9.2
Standard error of observations is estimated to be 0.377.

Message: the following units have high leverage.
Unit Response Leverage

30 0.477 0.102
72 0.699 0.073

Estimates of parameters

Parameter estimate s.e. t(109) t pr.
Constant 1.1235 0.0891 12.62 <.001
Windsp -0.02193 0.00818 -2.68 0.008
Rain yes -0.1240 0.0745 -1.66 0.099

Parameters for factors are differences compared with the reference level:

Factor Reference level
Rain no

 12 RGRAPH

The effect of rainfall is represented here by the difference between dry and wet days: that
is, by comparing level yes of the factor Rain to its reference level no. (By default the
reference level is the first level of the factor, but the Column Attributes spreadsheet menu
allows you to choose other levels.) So the model is

Logsulphur = a + b × Windsp

for dry days, and
Logsulphur = a + d + b × Windsp

for wet days.

6.5 Regression with groups 87

Figure 6.12

The model thus consists of two
parallel regression lines (Figure
6.12). The estimates show that
rainfall decreases the sulphur on
average by 25% (antilog(–0.1240) =
75%), but this effect is not
statistically significant there is still
a large amount of unexplained
var ia t ion in the su lphur
measurements. This version of the
model is very convenient if you
want to make comparisons with the
reference level (which may, for
example, represent a standard set of
conditions or treatment). However,
we show later in this section how
you can obtain the alternative
version with a parameter in the
model for each intercept.

We can see whether the linear
effect of wind speed is different in the two categories of rainfall by adding the interaction
Windsp.Rain.

 13 ADD [FPROBABILITY=yes; TPROBABILITY=yes] Windsp.Rain

Regression analysis

Response variate: Logsulphur
Fitted terms: Constant + Windsp + Rain + Windsp.Rain

Summary of analysis

Source d.f. s.s. m.s. v.r. F pr.
Regression 3 1.92 0.6402 4.47 0.005
Residual 108 15.47 0.1432
Total 111 17.39 0.1567

Change -1 -0.03 0.0323 0.23 0.636

Percentage variance accounted for 8.6
Standard error of observations is estimated to be 0.378.

Message: the following units have large standardized residuals.
Unit Response Residual

98 1.633 2.61

Message: the following units have high leverage.
Unit Response Leverage

30 0.477 0.160
72 0.699 0.112

88 6 Regression

Figure 6.13

95 1.146 0.111
104 1.580 0.093

Estimates of parameters

Parameter estimate s.e. t(108) t pr.
Constant 1.153 0.109 10.57 <.001
Windsp -0.0252 0.0107 -2.36 0.020
Rain yes -0.208 0.193 -1.08 0.283
Windsp.Rain yes 0.0079 0.0167 0.47 0.636

Parameters for factors are differences compared with the reference level:

Factor Reference level
Rain no

 14 RGRAPH

The output now shows the slope of
the regression for dry days, titled
Windsp, and the difference in
slopes between wet and dry, titled
Windsp.Rain yes. So again we
can see immediately that the
difference between the slopes is
small and not significant. The graph
of the fitted model is shown in
Figure 6.13.

We can use the accumulated
analysis of variance table to help
decide how complicated a model is
needed. We could have done this by
setting the PRINT option in the ADD
statement (line 13) like this:

ADD [PRINT=#,accumulated; FPROBABILITY=yes; TPROBABILITY=yes] \
 Windsp.Rain

Remember that the special character # can be used to represent the default setting, as
explained in Section 3.1. Alternatively (as below) we can use RDISPLAY.

 15 RDISPLAY [PRINT=accumulated; FPROBABILITY=yes]

Regression analysis

6.5 Regression with groups 89

Accumulated analysis of variance

Change d.f. s.s. m.s. v.r. F pr.
+ Windsp 1 1.4952 1.4952 10.44 0.002
+ Rain 1 0.3933 0.3933 2.75 0.100
+ Windsp.Rain 1 0.0323 0.0323 0.23 0.636
Residual 108 15.4677 0.1432

Total 111 17.3884 0.1567

Here a Common line (in fact, a simple linear regression) would be enough. However, we
will refit the parallel lines to illustrate how to get a parameter for each intercept, rather
than parameters for differences from the reference level.

 16 TERMS [FULL=yes] Windsp + Rain + Windsp.Rain
 17 FIT [CONSTANT=omit; FPROBABILITY=yes; TPROBABILITY=yes] \
 18 Windsp + Rain

Regression analysis

Response variate: Logsulphur
Fitted terms: Windsp + Rain

Summary of analysis

Source d.f. s.s. m.s. v.r. F pr.
Regression 2 1.89 0.9442 6.64 0.002
Residual 109 15.50 0.1422
Total 111 17.39 0.1567

Change -1 -0.39 0.3933 2.77 0.099

Percentage variance accounted for 9.2
Standard error of observations is estimated to be 0.377.

Message: the following units have high leverage.
Unit Response Leverage

30 0.477 0.102
72 0.699 0.073

Estimates of parameters

Parameter estimate s.e. t(109) t pr.
Windsp -0.02193 0.00818 -2.68 0.008
Rain no 1.1235 0.0891 12.62 <.001
Rain yes 1.000 0.109 9.14 <.001

The option Full=yes in the TERMS statement (line 16) ensures that Genstat allocates a
parameter to every level of each factor in the model (otherwise it excludes their reference

90 6 Regression

levels). In line 17, we set option CONSTANT=omit to omit the constant. So the analysis
now has an (i.e. constant) for each level of Rain. The t-statistics now assess whether each
of those constants is zero, rather than their difference. We could fit a regression
coefficient for each level of Rain by also omitting Windsp i.e.

FIT [CONSTANT=omit; FPROBABILITY=yes; TPROBABILITY=yes]\
 Rain + Windsp.Rain

6.6 Practical

Spreadsheet file Calcium.gsh (in the Data folder) contains a data set, discussed in
Sections 4.6 and 6.4 of McConway, Jones & Taylor (1999, Statistical Modelling using
GENSTAT, Arnold, London), which contains information about mortality in 61 towns.
The aim is to study how this relates to the calcium concentration in the drinking water
supply.

Fit a linear regression of mortality on calcium. Are the assumptions satisfied better by
transforming mortality to logarithms?

Perform a simple linear regression with groups to see how the relationship is affected
by region.

6.7 Other regression facilities

In addition to the linear regression models, described in this chapter, Genstat covers many
other types of regression model, including smoothing splines and locally weighted
regression. It also has commands and menus for other regression analyses including
• all-subsets regression,
• screening tests,
• polynomial regression,
• nonlinear curves (both standard and user-defined),
• split-line regression,
• generalized linear models (for non-Normal data like counts and proportions),
• ordinal regression,
• generalized additive models,
• generalized linear mixed models,
• hierarchical generalized linear models,
• regression trees and forests, and
• quantile regression.

Menus for some of these are described in the Guide to Regression, Nonlinear and
Generalized Linear Models in Genstat. All the main commands are described, with
examples, in the Guide to the Genstat Command Language, Part 2 Statistics, Chapter 3.
(These Guides can both be accessed from within Genstat for Windows by selecting sub-
options of the Genstat Guides option of the Help menu on the menu bar.)

The other regression commands are in the Genstat Reference Manual, Part 3
Procedure Library PL26 (to open, select the Procedure Library sub-option of the Genstat

Reference Manual option of the Help menu on the menu bar).

7 Analysis of variance

Genstat has very comprehensive facilities for analysis of variance. In this chapter, we
introduce the main commands, and show how they are used by the menus. However, we
do not attempt to cover all the possibilities, nor to describe the underlying statistical
theory. A full description of the commands (and theory) is in the Guide to the Genstat
Command Language, Part 2 Statistics, Chapter 4, while the menus (and theory) are
described in the Guide to Anova and Design in Genstat. These can be accessed from
within Genstat for Windows by selecting sub-options of the Genstat Guides option of the
Help menu on the menu bar.

Analyses with one or two treatment factors, and optionally also a block factor, can be
analysed very easily by the A2WAY procedure, which is used by the One- and two-way

Anova menu (see Sections 1.3 and 3.1 of the Guide to Anova and Design in Genstat). If
that is all that you want you should read its description in the Genstat Reference Manual,
Part 3 Procedure Library PL25 or the on-line help.

In this chapter, we describe the ANOVA directive, which is used by the general Analysis

of Variance menu, and handles a much wider set of situations. Technically it analyses data
from generally balanced designs. These include most of the commonly occurring
experimental designs such as randomized blocks, Latin squares, split plots and other
orthogonal designs, as well as designs with balanced confounding, like balanced lattices
and balanced incomplete blocks. ANOVA can itself detect whether or not a design can be
analysed, giving diagnostic AN-1 if the design is unbalanced; so if you are not sure
whether or not a particular design is analysable, you can run it through ANOVA to check.
Unbalanced designs with a single error term can be analysed using the AUNBALANCED
procedure instead of ANOVA; see Section 4.1.10 of the Guide to the Genstat Command
Language, Part 2 Statistics. Alternatively, if you have several error terms, you can use
the REML directive; the associated commands are described in Chapter 5 of the Guide to
the Genstat Command Language, Part 2 Statistics, and the menus are in the Guide to
REML In Genstat.

So, in this chapter, you will learn about:
• the TREATMENTSTRUCTURE directive, which defines the treatment (or fixed) terms

for the analysis;
• the BLOCKSTRUCTURE directive, which defines the "underlying structure" of the

data or, equivalently, the error terms;
• the ANOVA directive, which does the analysis;
• how BLOCKSTRUCTURE, TREATMENTSTRUCTURE, COVARIATE and ANOVA are

used by the Analysis of Variance menu;
• how to use the BLOCKSTRUCTURE directive to analyse a randomized-block design;
• how to use the BLOCKSTRUCTURE directive to analyse a split-plot design (this

information, in Section 7.7 and 7.8, can be skipped if you are interested only in the
simpler designs).

92 7 Analysis of variance

Figure 7.1

Figure 7.2

7.1 Designs with a single error term

The spreadsheet file Canola.gsh, in the Data
folder, contains data from a field experiment to
examine the effects of sulphur and nitrogen
fertilizers on the yield of canola; see Figure 7.1.
So there are two treatment factors, which have
been called S and N. The experiment used a
randomized-block design, so there is also a
factor, here called block, to indicate the block
to which each of the experimental plots
belonged. The factor plot numbers the plots in
each block.

Initially, we shall ignore the structure of the
design, and treat the data as though they came
from a completely-randomized design (i.e. one
where the treatments were applied to the plots completely at random). So the model has
a single error term, representing the underlying random variability of the plots.

In this section we will
analyse the design using the
general Analysis of Variance

menu, and explain the
commands that it uses. You
open the menu (Figure 7.2)
by clicking on the General

sub-option of the Analysis of

Variance option of the Stats

menu on the menu bar. The
Design box at the top of the
menu is a drop-down list
containing many of the
standard analyses. The menu
customizes itself to provide
the appropriate controls for each analysis, and writes Genstat statements to define the
models to be fitted. Here we have selected Two-way ANOVA (no Blocking) and so, as well
as a box for the y-variate, there are boxes for the two treatment factors (here N and S). If
we click on Run, the menu writes the following script:

"Two-way ANOVA (no Blocking)."
BLOCK "No Blocking"
TREATMENTS N*S
COVARIATE "No Covariate"
ANOVA [PRINT=aovtable,information,means; CONTRASTS=7;\
 PCONTRASTS=7; FPROB=yes; PSE=diff] yield

Before we can use ANOVA to analyse the data, we must first define the model that is to
be fitted. Potentially this has three parts, which can be given in any order

The BLOCKSTRUCTURE directive (or BLOCK for short) defines the "underlying
structure" of the design or, equivalently, the error terms for the analysis. Its parameter
is a model formula (usually called the block formula), and it has no options. In simple

7.1 Designs with a single error term 93

cases like this, where there is only a single error term, the directive can be omitted.
However, the model definitions carry over from one analysis to another unless you restart
the session or server (see the Run menu on the menu bar) or you clear all data (see the
Data menu). So the menu has included it in the script, with a null setting to cancel any
previous definition.

The TREATMENTSTRUCTURE directive specifies the treatment (or systematic, or fixed)
terms for the analysis. Again its parameter is a model formula (usually called the
treatment formula), and it has no options.

A full definition of model formulae is given in Section 3.9, so we give only a brief
description here. In its simplest form, a model formula is a list of model terms separated
by the operator +. Each model term specifies a set of parameters in a statistical model.
It may be a single factor (representing a set of main effects). Alternatively, it may consist
of several factors separated by the operator dot (.), and define a higher-order term like
an interaction. The other operators provide ways of specifying a formula more succinctly,
or of representing its structure more clearly.

Factorial (or crossed) relationships can be specified by the star operator (*). Here we
have a two-way factorial structure and so, in line 3 below, we define

TREATMENTSTRUCTURE N * S

This is expanded by Genstat automatically to become

TREATMENTSTRUCTURE N + S + N.S

The meanings of terms like N.S depend on context: they represent all the joint effects of
the factors in the term that have not been fitted already by earlier terms in the model.
Here we have fitted the main effects of N and S, and so N.S represents their interaction.

The ANOVA directive has an option, FACTORIAL, which can be used to specify the
maximum order (that is, number of factors) in the treatment terms to be fitted in the
analysis. The default is 3, so it does not need to be set in the script above.

The COVARIATE directive specifies the covariates if an analysis of covariance is
required. This is not discussed here, but details can be found in Section 3.6 of the Guide
to Anova and Design in Genstat or Section 4.3 of the Guide to the Genstat Command
Language, Part 2 Statistics. Here there are no covariates. So the Covariates box in the
menu has been left unchecked, and the script contains a null COVARIATE statement to
cancel any earlier definition.

Once the model has been defined, the ANOVA directive can be used to perform the
analysis of variance. Its first parameter specifies the response or y-variates. The menu
allows you to analyse only one variate at a time, but the command allows you to list
several. If a y-variate contains missing values, these are estimated in the analysis and the
degrees of freedom are adjusted (see the Guide to the Genstat Command Language, Part
2 Statistics, Section 4.4). When you list several y-variates, a unit will be treated as
missing if it missing in any y-variate or any covariate. So, if the y-variates have different
sets of missing units, you may prefer to analyse them in separate statements.

94 7 Analysis of variance

Figure 7.3

The options of the ANOVA

statement are defined by boxes in
the ANOVA Options menu (Figure
7.3), which is obtained by clicking
on the Options button of the Analysis

of Variance menu. Most of the
Display boxes are used to define the
PRINT option of ANOVA; this can be
set to a list of string tokens to select
the output to be printed. The
exception is the F-probabilities box,
which sets the option FPROB (i.e.
FPROBABILITY); this controls
whether probabilities are given for
the variance ratios in the analysis-
of-variance table.

The most commonly used settings
of PRINT are:

aovtable analysis-of-variance table,
information details of large residuals, non-orthogonality and

any aliasing in the model,
covariates estimated coefficients and standard errors of any

covariates,
effects tables of effects,
residuals tables of residuals,
contrasts estimated coefficients of polynomial or other

contrasts,
means tables of means,
%cv coefficient of variation, and
missingvalues estimated missing values.

The default is aovtable, information, covariates, means, missingvalues.
In the ANOVA statement above PRINT=aovtable,information,means, giving the

output shown below.

 2 SPLOAD 'Canola.gsh'

Loading Spreadsheet File

Catalogue of file Canola.gsh

Sheet Title:
Data imported from Genstat Spreadsheet: C:\Program Files\Gen18ed\Data\Canola.gsh
 on: 16-Mar-2014 12:53:48

Sheet Type: vector

 Index Type Nval Name
 1 factor 36 block
 2 factor 36 plot
 4 factor 36 N

7.1 Designs with a single error term 95

 6 factor 36 S
 7 variate 36 yield

Note: Missing indices are used by unnamed or system structures. These
store ancillary information, for example factor labels.

 3 TREATMENTSTRUCTURE N * S
 4 ANOVA [FPROBABILITY=yes] yield

Analysis of variance

Variate: yield

Source of variation d.f. s.s. m.s. v.r. F pr.
N 2 4.59223 2.29611 42.56 <.001
S 3 0.97720 0.32573 6.04 0.003
N.S 6 0.64851 0.10808 2.00 0.105
Residual 24 1.29476 0.05395
Total 35 7.51269

Message: the following units have large residuals.

units 17 0.527 s.e. 0.190
units 22 -0.405 s.e. 0.190

Tables of means

Variate: yield

Grand mean 1.104

N 0 180 230
 0.601 1.313 1.398

S 0 10 20 40

 0.829 1.155 1.167 1.266

N S 0 10 20 40
 0 0.560 0.770 0.524 0.552

 180 0.894 1.289 1.525 1.545
 230 1.032 1.404 1.454 1.700

Standard errors of differences of means

Table N S N

S
rep. 12 9 3
d.f. 24 24 24
s.e.d. 0.0948 0.1095 0.1896

96 7 Analysis of variance

The aovtable setting of the PRINT option produces the analysis-of-variance table. This
has a line for each of the three treatment terms: N represents the main effect of nitrogen,
that is the overall way in which yield responds to nitrogen. Similarly S represents the
main effect of sulphur, while N.S represents the interaction between nitrogen and
sulphur. The interaction assesses the way in which the effect of nitrogen on yield differs
according to the amount of sulphur or, equivalently, the way in which the sulphur effect
differs according to the amount of nitrogen. If there is no interaction, we could decide on
the best amount of nitrogen to apply without needing to consider how much sulphur will
be used (and how much sulphur to use without needing to think about the amount of
nitrogen). A more detailed explanation of the meaning of interactions is given in Section
3.1 of the Guide to Anova and Design in Genstat.

The information setting of the PRINT option provides details of any large residuals,
non-orthogonality and aliasing in the model. As there are none in this analysis, nothing
is printed.

The means setting of the PRINT option gives a table of means for every treatment term
in the analysis of variance. The Standard Errors boxes in the ANOVA Options menu control
the types of standard error that accompany the tables, by setting the PSE option in the
ANOVA statement. In Figure 7.3 the Differences box is checked, and the other boxes are
unchecked. So the statement contains the setting PSE=diff. Remember that string
tokens like differences can always be abbreviated to four characters, so this is
equivalent to putting PSE=differences. As this is the default setting, the option could
have been omitted. For clarity, though, menus will usually set all the options that they
control. Other boxes correspond to the setting means which produces standard errors of
means, and LSD which produces least significant differences. The significance level to
use in the calculation of the least significant differences can be changed from the default
of 5% using the LSDLEVEL option; this corresponds to the box to the right of the LSDs

box (which is greyed-out unless the the LSDs box is checked). The All Differences box is
more complicated: it uses the AKEEP directive to save all the differences in a symmetric
matrix, and then the PRINT directive to print them. If you leave all the Standard Errors

boxes unchecked, the menu will set PSE=* and no standard errors will be printed.
The CONTRASTS and PCONTRASTS options could have been omitted as they are not

relevant here. They may be needed if you are fitting contrasts of treatment terms. These
are described in Section 3.2 of the Guide to Anova and Design in Genstat or Section 4.5
of the Guide to the Genstat Command Language, Part 2 Statistics.
The other options and parameters of ANOVA are described in the Guide to the Genstat
Command Language, Part 2 Statistics, Section 4.1.2.

7.1 Designs with a single error term 97

Figure 7.4

You can obtain further output from
the analysis by using the ANOVA

Further Output menu, which is
obtained by clicking on the Further

Output button of the Analysis of

Variance menu. In Figure 7.4, we are
asking to print the fitted values. This
uses the ADISPLAY directive, which
has options PRINT, FPROBABILITY
and PSE just like those of ANOVA.
The output below is generated by the
effects setting of their PRINT
options. These are the estimates of
the parameters in the linear model
that has been fitted:

yijk = ì + nj + sk + nsjk + åijk

in which the parameters
nj represent the main effect of nitrogen (N),
sk represent the main effect of sulphur (S), and
nsjk represent the interaction between nitrogen and sulphur (N.S).

These all arise from the treatment model, whereas the grand mean ì and the residuals åijk

are included automatically. (For further details about linear models for factorial designs
see the Guide to the Genstat Command Language, Part 2 Statistics, Section 4.1.)

 5 ADISPLAY [PRINT=effects]

Tables of effects

Variate: yield

N effects, e.s.e. 0.0670, rep. 12

N 0 180 230
 -0.503 0.209 0.294

S effects, e.s.e. 0.0774, rep. 9

S 0 10 20 40
 -0.276 0.051 0.063 0.162

N.S effects, e.s.e. 0.1341, rep. 3

N S 0 10 20 40
 0 0.234 0.118 -0.141 -0.211

 180 -0.144 -0.075 0.148 0.071
 230 -0.090 -0.044 -0.007 0.141

98 7 Analysis of variance

Figure 7.5

The Residual Plots button of the ANOVA Further Output menu uses the APLOT procedure
to display diagnostic plots of the residuals; this is described in Section 7.4. The Means

Plots button uses the AGRAPH procedure to display tables of means; see Section 7.6. The
other buttons use the APOWER, APERMTEST and AMCOMPARISON procedures, which are
explained in Sections 4.11.3, 4.1.6 and 4.1.8 of the Guide to the Genstat Command
Language, Part 2 Statistics.

To save output using the Genstat menus,
you click on the Save button in the Analysis of

Variance menu (Figure 7.2) to open the
ANOVA Save Options menu shown in Figure
7.5. The menu accesses the most commonly-
needed components. The AKEEP directive,
which it uses, is far more comprehensive.
For example, the menu settings in Figure 7.5
will generate the statement below.

AKEEP RESIDUALS=Resids; FITTEDVALUES=Fitvals

This uses the RESIDUALS and FITTEDVALUES options of RKEEP to save the residuals
and fitted values in variates Resids and Fitvals. The parameters of AKEEP can save
information, like tables of means, for individual terms in the analysis. Full details are in
the Guide to the Genstat Command Language, Part 2 Statistics, Section 4.6.

In the remainder of this chapter we will concentrate on the analysis of variance
commands, rather than the menus. However, you can find descriptions of how to use the
menus for the later analyses, in Sections 3.1 and 5.1 of the Guide to Anova and Design
in Genstat, or Sections 6.5 and 6.8 of the Introduction to Genstat for Windows.

7.2 Practical

An experimenter conducted a trial with insecticides for killing ants. Five types of
insecticide were used on each of three types of bait. The experimenter measured the time
from the release of a colony of ants to when the bait was picked up. Each combination
of bait and insecticide was used three times, the order of the observations being decided
entirely at random. The data are available in file Ant.gsh in the Data folder. Analyse the
experiment.

7.3 Randomized-block designs

The randomized-block design is perhaps the simplest type of designed experiment. In
these designs, the experimental units are grouped together into sets known as blocks with
the aim that units in the same block will be more similar than units in different blocks.
Each block contains the same number of replicates of each treatment combination
(usually one of each), and the allocation of the treatments is randomized independently

7.3 Randomized-block designs 99

within each block. In our example, there is a factor called block to indicate the "block"
of land to which each plot belonged. In other examples the blocking factor might
represent different litters of animals, or different days on which the experiment was
conducted, and so on.

In the analysis, the aim is to estimate and remove the between-block differences so that
the treatment effects can be estimated more precisely. The conventional way of analysing
these designs, which can be seen in many text books, can be achieved in Genstat simply
by putting the block factor (here called block) at the start of the treatment formula, as
we have done in line 6 below.

TREATMENTSTRUCTURE block + N * S

The variance ratio for block compares the variability of the blocks of land with the
variability of the individual plots within each block, and its value of 3.44 shows that it
was worthwhile using the design in this experiment. This can be confirmed also by the
fact that the mean square for the Residual has decreased from 0.054 to 0.045. (The
Residual line now represents the random variability of the experimental plots after
removing block differences as well as the effects of the treatments.) So the standard
errors of differences of means will also be smaller; see the final analysis in this section.

 6 TREATMENTSTRUCTURE block + N * S
 7 ANOVA [PRINT=aov; FPROBABILITY=yes] yield

Analysis of variance

Variate: yield

Source of variation d.f. s.s. m.s. v.r. F pr.
block 2 0.30850 0.15425 3.44 0.050
N 2 4.59223 2.29611 51.22 <.001
S 3 0.97720 0.32573 7.27 0.001
N.S 6 0.64851 0.10808 2.41 0.061
Residual 22 0.98625 0.04483
Total 35 7.51269

This method of including the block factor in the treatment model works well for
straightforward designs like the randomized-block design (and if this is as complicated
as your designs are likely to become, you can omit the rest of this section). However, it
is not satisfactory in more complicated situations like the balanced-incomplete-block or
split-plot designs. Moreover, the analysis that is obtained does not reflect the real
structure of the design, for example that Block is a random term and not a fixed term
like the treatment main effects and interaction.

Consequently, the BLOCKSTRUCTURE directive is provided to allow you to define the
underlying structure of the design, and thus the random (or error) terms that should occur
in the analysis. The randomized-block design has an underlying structure of units nested
within blocks. In the field experiment, the factor block indicates the block to which each
plot belongs and the factor plot identifies the plots within each block, and so we can
specify the block structure as follows:

BLOCKSTRUCTURE block / plot

100 7 Analysis of variance

This expands to give two model terms

block + block.plot

each of which now defines a stratum in the analysis-of-variance table. The Block
stratum contains the variation between blocks, and the block.plot stratum contains the
variation between the plots within each block.

 8 TREATMENTSTRUCTURE N * S
 9 BLOCKSTRUCTURE block / plot
 10 ANOVA [FPROBABILITY=yes] yield

Analysis of variance

Variate: yield

Source of variation d.f. s.s. m.s. v.r. F pr.

block stratum 2 0.30850 0.15425 3.44

block.plot stratum
N 2 4.59223 2.29611 51.22 <.001
S 3 0.97720 0.32573 7.27 0.001
N.S 6 0.64851 0.10808 2.41 0.061
Residual 22 0.98625 0.04483

Total 35 7.51269

Message: the following units have large residuals.

block 1 plot 3 -0.349 s.e. 0.166
block 2 plot 5 0.532 s.e. 0.166
block 2 plot 10 -0.400 s.e. 0.166

Tables of means

Variate: yield

Grand mean 1.104

N 0 180 230
 0.601 1.313 1.398

S 0 10 20 40

 0.829 1.155 1.167 1.266

N S 0 10 20 40
 0 0.560 0.770 0.524 0.552

 180 0.894 1.289 1.525 1.545
 230 1.032 1.404 1.454 1.700

7.4 Plots of residuals 101

Figure 7.6

Standard errors of differences of means

Table N S N

S
rep. 12 9 3
d.f. 22 22 22
s.e.d. 0.0864 0.0998 0.1729

For the randomized-block design it may seem that the change has involved no more than
a relabelling of the analysis-of-variance table. Here all the treatment terms are estimated
in the bottom stratum Block.Plot. The advantage of the use of the BLOCKSTRUCTURE
directive becomes clearer when there are treatments that are estimated in one of the
higher strata, as we shall see in Section 7.7.

7.4 Plots of residuals

Procedure APLOT provides up to four types of plots of residuals so that you can check the
assumptions of the analysis.

The plots are selected using the METHOD parameter, with settings: fitted for residuals
versus fitted values, normal for a Normal plot, halfnormal for a half-Normal plot,
histogram for a histogram of residuals, absresidual for a plot of the absolute values
of the residuals versus the fitted values, and index for a plot against an "index" variable
(specified by the INDEX option). The default is
METHOD=fitted,normal,halfnormal,histogram.

The residuals and fitted values are
accessed automatically from the
structure specified by the SAVE
option of APLOT. If the SAVE
option is not set, they are taken from
the SAVE structure of the last y-
variate to have been analysed by
ANOVA. By default, simple residuals
are plotted, but you can set option
RMETHOD=standardized to plot
standardized residuals instead.

Figure 7.6 shows the default plots
from the analysis of the canola data
in Section 7.3.

Chapter 4 of the Guide to Anova
and Design on Genstat has more
information about the assumptions.
Further details about APLOT can be
found in the Guide to the Genstat
Command Language, Part 2
Statistics, Section 4.1.4.

102 7 Analysis of variance

7.5 Practical

Seven litters each of five rats were used in a randomized-block design (with litters as
blocks) to study the effects of different diets on the gain in weight of rats. Analyse the
data, in file Ratblocks.gsh, to see whether there are any differences between the diets.

Plot and assess the residuals.

7.6 Plots of means

Procedure AGRAPH can be used to plot tables of means from an ANOVA analysis. If none
of its options or parameters are specified, AGRAPH plots the first two-way table of means
in the most recent ANOVA (or for the first one-way table if there were no two-way tables).
Alternatively, you can plot means from an earlier analysis, by using the SAVE option of
AGRAPH to specify its save structure (saved using the SAVE option of the ANOVA
command that performed the analysis).

Usually, each mean is represented by a point. However, with high-resolution plots, the
METHOD option can be set to lines to draw lines between the points, or data to draw
just the lines and then also plot the original data values, or barchart to plot the means
as a barchart, or splines to plot the points together with a smooth spline to show the
trend over each group of points. The DFSPLINE specifies the degrees of freedom for the
splines; if this is not set, 2 d.f. are used when there are up to 10 points, 3 if there are 11
to 20, and 4 for 21 or more. The GRAPHICS option controls whether a high-resolution or
a line-printer graph is plotted; by default GRAPHICS=high.

The PSE option specifies the type of error bar to be plotted with the means, with
settings:

differences average standard error of difference;
lsd average least significant difference;
means average effective standard error for the means;
allmeans plots plus and minus the effective standard error

around every mean.
The LSDLEVEL option sets the significance level (%) to use for the least significant
differences (default 5). The allmeans setting is often unsuitable for plots other than
barcharts when there are GROUPS, as the plus/minus e.s.e. bars may overlap each other.

You can define the table of means to plot explicitly, by specifying its classifying factors
using the XFACTOR, GROUPS, TRELLISGROUPS and PAGEGROUPS parameters. The
XFACTOR parameter defines the factor against whose levels the means are plotted. With
a multi-way table, there will be a plot of means against the XFACTOR levels for every
combination of levels of the other factors classifying the table. The GROUPS parameter
specifies factors whose levels are to be included in a single window of the graph. So, for
example, if you specify

AGRAPH [METHOD=line] XFACTOR=A; GROUPS=B

AGRAPH will produce a plot of the means in a single window with factor A on the x-axis,
and a line for each level of the factor B. You can set GROUPS to a pointer to specify
several factors to define groups. For example

POINTER [VALUES=B,C] Groupfactors
AGRAPH [METHOD=line] XFACTOR=A; GROUPS=Groupfactors

7.6 Plots of means 103

Figure 7.7

to plot a line for every combination of the levels of factors B and C. Similarly, the
TRELLISGROUPS option can specify one or more factors to define a trellis plot. For
example,

AGRAPH [METHOD=line] XFACTOR=A; GROUPS=B; TRELLISGROUPS=C

will produce a plot for each level of C, in a trellis arrangement; each plot will again have
factor A on the x-axis, and a line for each level of the factor B. Likewise, the
PAGEGROUPS parameter can specify factors whose combinations of levels are to be
plotted on different pages. So

AGRAPH [METHOD=line] XFACTOR=A; GROUPS=B; PAGEGROUPS=C

will produce a plot for each level of C, but now on separate pages. Multi-way tables can
plotted even if the corresponding model term was not in the ANOVA analysis. For example
you can plot a two-way table even if the analysis contained only the main effects of the
two factors; however, the lines will then all be parallel and no standard errors or LSDs
can be included.

The NEWXLEVELS parameter enables different levels to be supplied for XFACTOR if the
existing levels are unsuitable. If XFACTOR has labels, these are used to label the x-axis
unless you set option XFREPRESENTATION=levels.

The TITLE, YTITLE and XTITLE parameters can supply titles for the graph, the y-axis
and the x-axis, respectively.

In Figure 7.7, we have used the command

AGRAPH [METHOD=line] S; GROUPS=N

to plot mean yields, as points joined
by lines, against the level of sulphur
for each level of nitrogen.

104 7 Analysis of variance

V3 N3 V3 N2 V3 N2 V3 N3

V3 N1 V3 N0 V3 N0 V3 N1

V1 N0 V1 N1 V2 N0 V2 N2

V1 N3 V1 N2 V2 N3 V2 N1

V2 N0 V2 N1 V1 N1 V1 N2

V2 N2 V2 N3 V1 N3 V1 N0

V3 N2 V3 N0 V2 N3 V2 N0

V3 N1 V3 N3 V2 N2 V2 N1

V1 N3 V1 N0 V1 N2 V1 N3

V1 N1 V1 N2 V1 N0 V1 N1

V2 N1 V2 N0 V3 N2 V3 N3

V2 N2 V2 N3 V3 N1 V3 N0

V2 N1 V2 N2 V1 N2 V1 N0

V2 N3 V2 N0 V1 N3 V1 N1

V3 N3 V3 N1 V2 N3 V2 N2

V3 N2 V3 N0 V2 N0 V2 N1

V1 N0 V1 N3 V3 N0 V3 N1

V1 N1 V1 N2 V3 N2 V3 N3

7.7 Split-plot designs

We now show how to analyse split-
plot designs. These designs were
devised originally for agricultural
experiments where some of the
factors can be applied to smaller
plots of land than others. Here there
are two treatment factors: three
different varieties of oats (labelled
V1, V2 and V3 on the plan), and
four levels of nitrogen (labelled N0
to N3). Because of limitations on
the machines for sowing seed,
different variet ies cannot
conveniently be applied to plots as
small as those that can be used for
the different rates of fertilizer. So
the design was set up in two stages.
First of all, the blocks were each
divided into three plots of the size
required for the varieties, and the
three varieties were randomly
allocated to the plots within each
block (exactly as in the randomized
blocks design). Then each of these
plots, or whole-plots as they are
usually known, was split into four
sub-plots (one for each rate of
nitrogen), and the allocation of
ni t rogen was randomized

independently within each whole-plot. Data from the experiment are in the spreadsheet
file Oats.gsh, in the Data folder.

The design has sub-plots nested within whole-plots, which are themselves nested
within the blocks: that is,

BLOCKSTRUCTURE Blocks/Wplots/Subplots

This expands to

Blocks + Blocks.Wplots + Blocks.Wplots.Subplots

giving strata for variation between blocks, between whole-plots within the blocks, and
for sub-plots within the whole-plots (within blocks).

Just as in the randomized block design, the blocks all contain the same sets of
treatments, and so no treatments are estimated in the Blocks stratum. But varieties,
which were applied to whole-plots, are estimated in the Blocks.Wplots stratum.

The variance ratio for varieties is calculated by dividing the Variety mean square by
the Blocks.Wplots residual mean square. It is easy to see that this is the correct thing
to do. When we look to see whether the varieties differ we are really trying to answer the

7.7 Split-plot designs 105

question: "Do the yields from the three sets of whole-plots, on the first of which the
variety Victory was grown, on the second Golden rain, and on the third Marvellous, differ
by more than the amount that we would expect for any three randomly chosen sets of
whole-plots?". (Technically, variety is said to be confounded with whole plots.) The
terms for Nitrogen, which was applied to sub-plots, and for the Variety.Nitrogen
interaction are both estimated in the stratum for sub-plots within whole-plots
(Blocks.Wplots.Subplots).

 2 SPLOAD 'Oats.gsh'

Loading Spreadsheet File

Catalogue of file Oats.gsh

Sheet Type: vector

 Index Type Nval Name
 1 factor 72 blocks
 2 factor 72 wplots
 3 factor 72 subplots
 6 factor 72 variety
 9 factor 72 nitrogen

 10 variate 72 yield

Note: Missing indices are used by unnamed or system structures. These
store ancillary information, for example factor labels.

 3 TREATMENTS variety * nitrogen
 4 BLOCK blocks / wplots / subplots
 5 ANOVA [FPROBABILITY=yes] yield

Analysis of variance

Variate: yield

Source of variation d.f. s.s. m.s. v.r. F pr.

blocks stratum 5 15875.3 3175.1 5.28

blocks.wplots stratum
variety 2 1786.4 893.2 1.49 0.272
Residual 10 6013.3 601.3 3.40

blocks.wplots.subplots stratum
nitrogen 3 20020.5 6673.5 37.69 <.001
variety.nitrogen 6 321.8 53.6 0.30 0.932
Residual 45 7968.8 177.1

Total 71 51985.9

Message: the following units have large residuals.

blocks 1 31.4 s.e. 14.8

106 7 Analysis of variance

Tables of means

Variate: yield

Grand mean 104.0

variety Victory Golden rain Marvellous
 97.6 104.5 109.8

nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt

 79.4 98.9 114.2 123.4

variety nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
Victory 71.5 89.7 110.8 118.5

Golden rain 80.0 98.5 114.7 124.8
Marvellous 86.7 108.5 117.2 126.8

Standard errors of differences of means

Table variety nitrogen variety

nitrogen
rep. 24 18 6
s.e.d. 7.08 4.44 9.72
d.f. 10 45 30.23
Except when comparing means with the same level(s) of
variety 7.68
d.f. 45

The standard errors accompanying the tables of means also take account of the stratum
where each treatment term was estimated.

The variety s.e.d. of 7.08 = %(2×601.3/24) is based on the residual mean square for
blocks.wplots, while that for nitrogen (4.44 = %(2×177.1/18)) is based on that for
blocks.wplots.subplots. The variety × nitrogen table is more interesting.
There are two s.e.d.'s according to whether the two means to be compared are for the
same variety. If they are, then the sub-plots from which the means are calculated will all
involve the same set of whole-plots, so any whole-plot variability will cancel out, giving
a smaller s.e.d. than for a pair of means involving different varieties.

Finally notice that this time the Information output category has generated a message
noting that block 1 has a large residual compared to the residuals of the other five blocks.
In this instance, the message can be taken as confirming the success of the choice of the
blocks: that is, that the yields of the plots in block 1 are consistently higher than those in
the other blocks. Large residuals in the block.wplot.subplot stratum, however,
might indicate possibly aberrant values.

Split-plot designs occur not only in field experiments, but also in animal trials (where,
for example, the same diet may need to be fed to all the animals in a pen but other
treatments may be applied to individual animals), or in industrial experiments (where
different processes may require different sized batches of material), or even in cookery
experiments. There can also be more than one treatment factor applied to any size of unit.

7.8 Practical 107

7.8 Practical

In an experiment to study the effect of two meat-tenderizing chemicals, the two (back)
legs were taken from four carcasses of beef and one leg was treated with chemical 1 and
the other with chemical 2. Three sections were then cut from each leg and allocated (at
random) to three cooking temperatures, all 24 sections (4 carcasses × 2 legs × 3 sections)
being cooked in separate ovens. The table below shows the force required to break a strip
of meat taken from each of the cooked sections (the data are also in the file Meat.gsh
in the Data folder). Analyse the experiment, and plot the means against the temperatures.

Leg 1 2
 ------------------- -------------------
Carcass Section Chemical Temp Force Chemical Temp Force
 1 1 1 2 5.5 2 3 6.3
 2 1 3 6.5 2 1 3.5
 3 1 1 4.3 2 2 4.8

 2 1 2 1 3.2 1 3 6.2
 2 2 3 6.0 1 2 5.0
 3 2 2 4.7 1 1 4.0

 3 1 2 1 2.6 1 2 4.6
 2 2 2 4.3 1 1 3.8
 3 2 3 5.6 1 3 5.8

 4 1 1 3 5.7 2 2 4.1
 2 1 1 3.7 2 3 5.9
 3 1 2 4.9 2 1 2.9

7.9 Other facilities for anova and design

The commands for analysis of variance are described, in detail with examples, in the
Guide to the Genstat Command Language, Part 2 Statistics, Chapter 4. This chapter also
covers Genstat's extensive facilities for designing experiments. The REML facilities for
analysing unbalanced designs, are described in Chapter 5. The equivalent menus are
described in the Guide to Anova and Design and the Guide to REML. All these Guides
can be accessed by clicking on sub-options of the Genstat Guides option of the Help menu
(see Figure 10.1).

Figure 8.1

8 Using commands with menus or spreadsheets

In this chapter we discuss some of the ways in which you can use commands alongside
the Genstat menus in order to extend the facilities that the menus offer, or simply to
repeat the same analysis more conveniently with a different data set.

So, you will learn how to:
• modify scripts from the Input Log;
• include analysis commands in a spreadsheet;
• use a FOR loop to repeat a sequence of commands, each time operating on a

different data set.

8.1 Commands from menus

The menus in Genstat provide convenient ways of generating analyses. As we have seen,
in earlier chapters, they operate by generating commands which are executed by the
Genstat server. Most users will have Genstat’s options set to record all these commands
in the Input Log. (This is controlled by the boxes in the Audit Trail tab of the Options menu
as explained in Section 1.3). If you have kept a full record (with the menu set as in Figure
1.13), you can recreate the same analyses later. First select the Input Log as the active
window by clicking on the Input Log line of the Window menu on the menu bar. Then save
it in a file using the Save menu obtained by clicking on either Save or Save As in the File

menu on the menu bar. When you rerun Genstat, open the file using the Select Input File

menu (obtained by clicking on Open in the File menu on the menu bar). Then click on
Submit Window in the Run menu on the menu bar.

You may also want to copy commands
from the Input Log into another text window
and adapt them. We illustrate this with the
set of data, showing water use at a
production plant, that we analysed in
Section 6.3. Information was collected over
17 months on variables possibly associated
with water usage: the average temperature,
the amount of production, the number of
operating days and the number of
employees. The data are available in the
spreadsheet file Water.gsh (Figure 8.1).

8.1 Commands from menus 109

Figure 8.2

First we fit a simple linear
regression for Water with a
single explanatory variable,
Product, using the Linear

Regression menu as shown
in Figure 8.2. (See Section
6.1 for more details about
the menu.) This generates
the output below.

Regression analysis

Response variate: Water
Fitted terms: Constant, Product

Summary of analysis

Source d.f. s.s. m.s. v.r. F pr.
Regression 1 1.270 1.2702 9.91 0.007
Residual 15 1.922 0.1282
Total 16 3.193 0.1995

Percentage variance accounted for 35.8
Standard error of observations is estimated to be 0.358.

Message: the following units have large standardized residuals.
Unit Response Residual

16 4.488 2.31

Message: the following units have high leverage.
Unit Response Leverage

2 2.828 0.27
3 2.891 0.25

Estimates of parameters

Parameter estimate s.e. t(15) t pr.
Constant 2.273 0.339 6.71 <.001
Product 0.0799 0.0254 3.15 0.007

The script of commands that has been executed to produce the analysis can be found at
the end of the Input Log.

"Simple Linear Regression"
MODEL Water
TERMS Product
FIT [PRINT=model,summary,estimates; CONSTANT=estimate;\

110 8 Using commands with menus or spreadsheets

Figure 8.3

 FPROB=yes; TPROB=yes] Product

As we explained in Section 6.1, MODEL has specified the response variate, TERMS has
defined the most complicated model that may be fitted, and FIT has fitted a linear
regression with the explanatory variate Product. Note that we have reformatted the FIT
command from the way in which it may appear within the log, so that each line fits within
the width of the page. (Remember that the character \ indicates that the command
continues onto the next line.)

If you want to repeat the analysis with another data set, you may find it easier to edit
the script instead of rerunning the menus. (Here there is only one menu to change, but in
more complicated analyses you may have used several.)

To do a regression on the variate Employ instead of Product, we could open a new
text window (see Section 1.3), copy the script there, and edit it to become.

"Simple Linear Regression"
MODEL Water
TERMS Employ
FIT [PRINT=model,summary,estimates; CONSTANT=estimate;\
 FPROB=yes; TPROB=yes] Employ

Then run the commands using
one of the methods provided
by the Run menu on the menu
bar (see Section 1.3). Here as
these are the only commands
in the window, it would be
easiest to click on the line
Submit Window, as shown in
Figure 8.3.

8.2 Practical

Use the Example Data Sets menu to open the spreadsheet file Peru.gsh. Fit a linear
regression of sbp on height (using the menus). Save the regression commands to a text
window, and modify the program to regression on age instead. Execute the program
using the Run menu.

8.3 Commands to analyse a spreadsheet 111

Figure 8.4

Figure 8.5

8.3 Commands to analyse a spreadsheet

Suppose we have decided that the right way to analyse this data set is by simple linear
regression. (Note that this is for illustration purposes only, as we actually need a multiple
linear regression, fitting all the explanatory variates, as we discovered in Section 6.3.) It
might then be useful to put the commands into the Analyse Spreadsheet Columns menu for
the spreadsheet Water.gsh. First we need to make Water.gsh the active window. Then
we select the Analysis line within the Sheet section of the Spread menu on the menu bar.

The lower half of the resulting
menu (Figure 8.4) has a section into
which you can type or paste
commands to analyse the data. The
menu provides flexibility by
allowing you to perform the
analysis, in turn, for several
columns. The columns can be
selected by highlighting them in the
Select Columns for Analysis window
of the menu. You refer to them in
the analysis commands using the
dummy whose name is given in the
Dummy window. A dummy is a data
structure that contains the identifier
of another structure. When a
command containing a dummy is
executed, the dummy is replaced by the identifier that it currently contains. So, by using
a dummy, you can conveniently change the data structure on which the command
operates. In Figure 8.4 the dummy is called X.

The commands in the lower half
of the window were pasted straight
from the Input Log (again with
some reformatting to ensure that
they do not need to scroll beyond
the right-hand side of the window).
So, they have Product as the
explanatory variate. To set the
commands to refer to an arbitrary
explanatory variate (denoted by the
dummy X) you click on the Replace button, fill in the resulting menu (Figure 8.5), and
click on OK.

The commands then become

"Simple Linear Regression"
MODEL Water
TERMS X
FIT [PRINT=model,summary,estimates;\
 CONSTANT=estimate; FPROB=yes; TPROB=yes] X

112 8 Using commands with menus or spreadsheets

Figure 8.6

Figure 8.7

To run the commands with
explanatory variates Employ and
Opdays, for example, you can
highlight their lines in the Select

Columns for Analysis window and
then click on Run. Alternatively,
click on the Save and Close button to
store the commands with the sheet.
You can then run the analysis at any
time: first highlight the columns by
clicking on their names at the top of
the spreadsheet; then either select
the Sheet Analysis line in the Run

menu on the menu bar, or make a
right-mouse click on the spreadsheet
and select User Defined (Sheet

Analysis) from the Analysis section of
the resulting menu (Figure 8.6). If,
as in Figure 8.6, the line Load data

into menu is checked, Genstat will open the Analyse Spreadsheet Columns menu with
Employ and Opdays already selected in the Select Columns for Analysis window, ready
for you to click on Run. If it is unchecked, Genstat simply runs the analyses.

The initial line

MODEL Water

is common to all the analyses. We
can arrange that this command is
executed only once (and thus
improve efficiency) by moving it to
the Spreadsheet Analysis Setup

Directives menu (Figure 8.7). This
menu is obtained by clicking on the
Setup button of the Analyse

Spreadsheet Columns menu. After
moving the line, you click on the OK

button on the Spreadsheet Analysis

Setup Directives menu, and then on
the Save button of the Analyse

Spreadsheet Columns menu.

8.4 Practical 113

8.4 Practical

Paste the linear regression program from Practical 8.2 into the Analyse Spreadsheet

Columns menu. Put dummy X into the program instead of height or age. Run the
analysis with some other x-variates.

8.5 Repeating a sequence of commands (FOR loops)

The commands that are executed with the spreadsheet analysis commands for the
columns Employ and Opdays can, as usual, be found in the Input Log.

"Analysis of Data in Spreadsheet: Water.gsh"
MODEL Water
FOR X = Employ,Opdays
 "Simple Linear Regression"
 TERMS X
 FIT [PRINT=model,summary,estimates;\
 CONSTANT=estimate; FPROB=yes; TPROB=yes] X
ENDFOR

After the initial “setup” line to define Water as the dependant variate (and a comment
to introduce the analysis), the TERMS and FIT lines are applied to the variates Employ
and Opdays using a for loop. This is introduced by a FOR directive, and terminated by
an ENDFOR directive. The parameters of FOR take the form: dummy = list of identifiers.
Here we have X = Employ,Opdays so the contents of the loop are executed twice. On
the first time, X is set to Employ and on the second it is set to Opdays.

If FOR has more than one parameter, the dummies change in parallel. So, if we had an
additional dependent variate, Coffee say, we could put

FOR Y = Coffee,Water; X = Employ,Opdays
 MODEL Y
 TERMS X
 FIT [PRINT=model,summary,estimates;\
 CONSTANT=estimate; FPROB=yes; TPROB=yes] X
ENDFOR

to perform a regression for Coffee with explanatory variate Employ, and then one for
Water with explanatory variate Opdays. So the two dummies, Y and X, pass through
their lists in parallel. If the second list, or any other subsequent list, is shorter than the
first list it is “recycled”: that is, the dummy starts the list again each time it reaches the
end until the first list has finished. For example,

FOR Y = Coffee,Water,Biscuits; X = Employ,Opdays
 MODEL Y
 TERMS X
 FIT [PRINT=model,summary,estimates;\
 CONSTANT=estimate; FPROB=yes; TPROB=yes] X
ENDFOR

would perform a regression for Coffee with explanatory variate Employ, then one for
Water with explanatory variate Opdays, and finally one for Biscuits with explanatory
variate Employ.

Further information about FOR, and the other programming facilities that Genstat
offers, can be found in Chapter 9.

114 8 Using commands with menus or spreadsheets

8.6 Practical

Modify the program that you wrote in the text window during Practical 8.2, and include
a FOR loop to do regressions of
• sbp on forearm,
• weight on age, and
• sbp on chin.
Do you need to type sbp more than once? Run the program and examine the output.

9 Programs and procedures

The standard Genstat directives provide a wide range of standard analyses, as well as
some more unusual techniques. However, the Genstat language has many of the facilities
of a computing language too. These can be useful even if you merely want to repeat the
same analysis several times (Section 9.1). They also allow you to write general programs,
and to add new commands to the language, as procedures (Section 9.5).

So, in this chapter you will learn:
• more about how to use FOR loops to repeat sequences of commands;
• how to use Block-if structures to choose which set of statements to execute with

each data set;
• how to exit from part of a program;
• how to form your programs into procedures.

9.1 FOR loops (recap)

Section 8.5 introduced the Genstat FOR loop, which repeats a sequence of statements
several times. The loop was constructed by the spreadsheet analysis commands when we
analysed the data in Water.gsh.

"Analysis of Data in Spreadsheet: Water.gsh"
MODEL Water
FOR X = Employ,Opdays
 "Simple Linear Regression"
 TERMS X
 FIT [PRINT=model,summary,estimates;\
 CONSTANT=estimate; FPROB=yes; TPROB=yes] X
ENDFOR

The loop starts with a FOR statement, and ends with an ENDFOR statement. The
parameters of FOR take the form: dummy = list of identifiers. Here we have X =
Employ,Opdays so the contents of the loop are executed twice. On the first time, Y is set
to Employ and on the second it is set to Opdays.

In Section 8.5 we also explained that, if FOR has more than one parameter, the
dummies change in parallel. If the second list, or any subsequent list, is shorter than the
first list it is “recycled”: that is, the dummy starts the list again each time it reaches the
end until the first list has finished. For example,

FOR Y = Coffee,Water,Biscuits; X = Employ,Opdays
 MODEL Y
 TERMS X
 FIT [PRINT=model,summary,estimates;\
 CONSTANT=estimate; FPROB=yes; TPROB=yes] X
ENDFOR

would perform a regression for Coffee with explanatory variate Employ, then one for
Water with explanatory variate Opdays, and finally one for Biscuits with explanatory
variate Employ.

There is also an alternative form of loop, with no parameters. Instead you can specify
the number of times to execute the loop by NTIMES option, and obtain the number of
each "pass" though the loop using the INDEX option. For example

116 9 Programs and procedures

 2 SPLOAD 'Water.gsh'

Loading Spreadsheet File

Catalogue of file Water.gsh

Sheet Type: vector

 Index Type Nval Name
 1 variate 17 Employ
 2 variate 17 Opdays
 3 variate 17 Product
 4 variate 17 Temp
 5 variate 17 Water

 3 POINTER [VALUES=Employ,Opdays,Product,Temp] Vars
 4 CALCULATE Nvars = NVALUES(Vars)
 5 FOR [NTIMES=Nvars; INDEX=i]
 6 CALCULATE Corr = CORRELATION(Water; Vars[i])
 7 & Nobservations = NOBS(Water + Vars[i])
 8 & Abscorr = ABS(Corr)
 9 PRCORRELATION [NOBSERVATIONS=Nobservations] \
 10 Abscorr; CUPROBABILITY=Prob
 11 CALCULATE Prob = 0.5 * Prob
 12 PRINT Corr,Prob
 13 ENDFOR

Corr Prob
0.4132 0.02480

Corr Prob
-0.08883 0.1836

Corr Prob
0.6307 0.001658

Corr Prob
0.2858 0.06655

On the first pass through the loop, the scalar i from the INDEX option of FOR has the
value one. So line 6 calculates the correlation between Water and the first element of the
Vars pointer, namely Employ. On the second pass, the correlation is between Water and
Opdays, and so on.

In line 7, NOBS is a summary function that gives the number of observations (i.e. non-
missing values). Remember from Section 5.1 that a unit in

Water + Vars[i]

will be missing if it is missing in either Water or Vars[i]. So Nobservations in line
7 will be the number of units that available to calculate the correlation in line 6. This is
then used in line 9 by the PRCORRELATION procedure when it calculate the cumulative
upper probability Prob of the absolute correlation Abscorr. The next line multiplies the

9.2 Block-if structures 117

probability by 0.5 to take account of the fact that we are doing a two-sided test.
In this and later examples we have indented the contents of the loop by two spaces.

This is to make it easier to read, and is not required by Genstat.

9.2 Block-if structures

The directives IF, ELSIF, ELSE, and ENDIF can be used to select between alternative
sets of statements. In the simplest case, we can use this to control whether or not a
particular set of statements is executed. For example

IF Prob .LE. 0.05
 PRINT 'Significant correlation'
ENDIF

Genstat evaluates the logical condition in the IF statement and then, if it is true, executes
the statements between IF and ENDIF; otherwise, if the condition is untrue, it skips those
statements and continues with whatever comes after ENDIF. (Logical expressions are
described in Section 5.1.)

By including ELSIF statements, we can construct a more complicated block-if
structure.

IF Prob .LE. 0.001
 PRINT 'Probability < 0.1%'
ELSIF Prob .LE. 0.01
 PRINT 'Probability < 1%'
ELSIF Prob .LE. 0.05
 PRINT 'Probability < 5%'
ENDIF

ELSIF statements also each have a logical expression. To execute the block-if structure,
Genstat looks at the result of the expression in the IF statement, and then each ELSIF
in turn, and executes the statements introduced by the IF or ELSIF that contains the first
true result. You can also supply some statements to be executed if none are true; these
are introduced by an ELSE statement. For example,

IF Prob .LE. 0.001
 PRINT 'Probability < 0.1%'
ELSIF Prob .LE. 0.01
 PRINT 'Probability < 1%'
ELSIF Prob .LE. 0.05
 PRINT 'Probability < 5%'
ELSE
 PRINT 'Not significant'
ENDIF

You can have any number of control structures (like loops or block-if structures) within
other control structures. We now put a block-if structure within the original loop from
Section 9.1.

 14 FOR [NTIMES=Nvars; INDEX=i]
 15 CALCULATE Corr = CORRELATION(Water; Vars[i])
 16 & Nobservations = NOBS(Water + Vars[i])
 17 & Abscorr = ABS(Corr)
 18 PRCORRELATION [NOBSERVATIONS=Nobservations] \
 19 Abscorr; CUPROBABILITY=Prob
 20 CALCULATE Prob = 0.5 * Prob

118 9 Programs and procedures

 21 IF Prob .LE. 0.001
 22 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 0.1%';\
 23 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 24 ELSIF Prob .LE. 0.01
 25 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 1%';\
 26 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 27 ELSIF Prob .LE. 0.05
 28 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 5%';\
 29 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 30 ELSE
 31 PRINT [IPRINT=*] 'Correlation',Corr,'Not significant';\
 32 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 33 ENDIF
 34 ENDFOR

Correlation 0.413 Probability < 5%

Correlation -0.089 Not significant

Correlation 0.631 Probability < 1%

Correlation 0.286 Not significant

Setting option IPRINT=* in the PRINT statements stops the identifiers of the data
structure Corr being printed.

9.3 Exit from a control structure

There are no labels and jumps in Genstat; however, the EXIT directive can be used to
break out of control structures like loops and block-if structures. The
CONTROLSTRUCTURE option indicates the type of control structure that is to be exited
(with default FOR). The NTIMES option specifies how many of them to exit (default 1).
The REPEAT option controls whether you exit from a loop altogether (the default,
REPEAT=no) or whether you go to ENDFOR and then repeat the loop with the next set of
parameters (REPEAT=yes). EXIT has a logical expression as its parameter to control
whether or not the exit takes place; if the expression is omitted, the exit always takes
place.

9.4 Practical

Re-open the spreadsheet file Peru.gsh from Practical 8.2, and set up a pointer
containing all the columns. (Hint: in Genstat for Windows, you can do this by clicking on
the Create Pointer sub-option of the Sheet option of the Spread menu.)

Write a loop to print the mean and variance of every variate. (Hint: use the MEAN and
VAR functions.)

Add an if-block so that you use 4 decimals if variance<10, 3 decimals if
10<variance<100, 2 if 100<variance<1000, or otherwise to use default decimals.

Execute the program using the Run menu.

9.4 Practical 119

9.5 Procedures

Sets of frequently required statements can be formed into procedures. As you have seen,
the use of a Genstat procedure looks exactly the same as the use of one of the standard
Genstat directives.

Genstat has a library of standard procedures which is attached automatically to Genstat
whenever it is run. Similarly there can be a local library which will also be attached
automatically, and you can form and attach libraries of your own. When Genstat meets
a statement with a name that it does not recognize as a directive nor as the name of a
procedure already in store, it will look for a procedure of that name in the libraries: firstly
in your own libraries, then in the local library (if any), and then in the standard procedure
library.

The standard library contains procedures contributed not only by the writers of Genstat
but also by knowledgeable Genstat users from many application areas and countries. It
is controlled by an Editorial Board, who check that the procedures are useful and reliable,
and maintain standards for the documentation. For details see the page, Procedure
Library: Instructions for Authors, in the on-line help.

Full information about procedures and procedure libraries is given in the Guide to the
Genstat Command Language, Part 1 Syntax and Data Management, Section 5.3. Here
we show a simple example to illustrate the main ideas.

Procedures start with a PROCEDURE statement to define the procedure name. The
options and parameters of the procedure are then defined, using the OPTION and
PARAMETER directives. The statements that perform the actions of the procedure come
next, followed by an ENDPROCEDURE statement.

Below, we define a procedure called CORTEST to calculate and test correlations
between two variables Y and X.

The procedure name is supplied by the parameter of PROCEDURE, in a quoted string
(see line 6). The first eight characters of the name must not be the same as any other
procedure that is currently accessible within Genstat; otherwise Genstat assumes that you
are replacing that procedure. If the first four characters are the same as those of another
procedure, Genstat will give a warning. Programs that have abbreviated the name to four
characters would then be ambiguous.

The PARAMETER option of PROCEDURE indicates whether the settings in any list
specified for the parameters of the procedure are to be taken individually, by calling the
procedure several times, or whether they should be processed together. The difference
between these alternatives can be illustrated by considering the directives ANOVA and
PRINT. For example, with

ANOVA Height,Weight; RESIDUALS=Hres,Wres

Genstat will first do an analysis with the values in the Height variate and store the
resulting residuals in the variate Hres; it then analyses Weight and stores the residuals
in Wres. This action corresponds to the default setting PARAMETER=dummy. Inside the
procedure, each parameter is represented by a dummy data structure with the same name
as the parameter. This will point to each item of the list in turn, like the parameters of a
FOR loop (Section 9.1). Conversely, in the statement

PRINT Height,Hres

the values of Height and Hres are printed together down the page, but this is possible

120 9 Programs and procedures

only if PRINT is able to access both variates simultaneously. In a procedure this can be
done by setting PARAMETER=pointer. Each parameter is then represented by a pointer,
storing the complete list of settings.

The procedure CORTEST has two parameters, Y and X, which are defined in line 7. The
PARAMETER option is not been set in the PROCEDURE statement, so these are represented
inside the procedure by the dummies Y and X. No options have been defined.

The statements to be executed when CORTEST is used are in lines 8-28 (the blank lines
in 8 and 28 are included to make the procedure easier to read, and are not required by
Genstat). The dummies Y and X refer to data structures in the outer program. All the other
data structures in lines 8-28 are local within the procedure. They have no connection with
data structures in the outer program (even those that might have the same identifier).
They are created when the procedure runs, and deleted when it ends.

The ENDPROCEDURE statement is in line 29. There is then a FOR loop, in lines 31-33,
that uses the procedure to calculate the same correlations as in Section 9.2.

 2 SPLOAD 'Water.gsh'

Loading Spreadsheet File

Catalogue of file Water.gsh

Sheet Type: vector

 Index Type Nval Name
 1 variate 17 Employ
 2 variate 17 Opdays
 3 variate 17 Product
 4 variate 17 Temp
 5 variate 17 Water

 3 POINTER [VALUES=Employ,Opdays,Product,Temp] Vars
 4 CALCULATE Nvars = NVALUES(Vars)
 5
 6 PROCEDURE 'CORTEST'
 7 PARAMETER 'Y','X'
 8
 9 CALCULATE Corr = CORRELATION(Y; X)
 10 & Nobservations = NOBS(Y + X)
 11 & Abscorr = ABS(Corr)
 12 PRCORRELATION [NOBSERVATIONS=Nobservations] \
 13 Abscorr; CUPROBABILITY=Prob
 14 CALCULATE Prob = 0.5 * Prob
 15 IF Prob .LE. 0.001
 16 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 0.1%';\
 17 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 18 ELSIF Prob .LE. 0.01
 19 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 1%';\
 20 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 21 ELSIF Prob .LE. 0.05
 22 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 5%';\
 23 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 24 ELSE
 25 PRINT [IPRINT=*] 'Correlation',Corr,'Not significant';\
 26 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 27 ENDIF
 28
 29 ENDPROCEDURE

9.5 Procedures 121

 30
 31 FOR [NTIMES=Nvars; INDEX=i]
 32 CORTEST Y=Water; X=Vars[i]
 33 ENDFOR

Correlation 0.413 Probability < 5%

Correlation -0.089 Not significant

Correlation 0.631 Probability < 1%

Correlation 0.286 Not significant

The PARAMETER and OPTION directives have several parameters that allow you to define
attributes to be checked. For example, we could redefine the PARAMETER statement
above to become

 PARAMETER 'Y','X','Corr','Prob'; \
 MODE=p; "default - expects an identifier list "\
 TYPE=2('variate','scalar'); \
 SET=2(yes,no); "X & Y must be set (but not Corr & Prob)"\
 INPUT=2(yes,no); "X & Y only for input (but not ...) "\
 DECLARED=2(yes,no); "X & Y must have been declared (but ...)"\
 PRESENT=2(yes,no); "X & Y must have values (but not ...) "\
 COMPATIBLE=*,'nvalues',*,* "X must have same no. values as Y"

The comments on the right-hand side of each line explain what is being checked by each
parameter. A full explanation of all the possibilities is in the Guide to the Genstat
Command Language, Part 1 Syntax and Data Management, Section 5.3.2.

Options and parameters can also be used to save output from the procedure. Below we
have defined new parameters Corr to save the correlation, and Prob to save the
probability. (So Corr and Prob will no longer be local to the procedure.) A complication
now, is that the program will fail with an unset dummy diagnostic unless the dummies
Corr and Prob are set. It would be tedious to require users of the procedure to set them
if they do not want to save the results that are calculated. So we use the ASSIGN directive
in line 17 to set them to local data structures if they have not been set in the procedure
call.

ASSIGN [METHOD=preserve] corr,prob; POINTER=Corr,Prob

ASSIGN sets either dummies or elements of pointers (hence the apparently confusing
name, POINTER, for the second parameter). So here we are assigning local data structures
corr and prob to Corr and Prob, but setting the option METHOD=preserve requests
that any existing values of the dummies are preserved. So, this acts as a "safety net" in
case these parameters are not set when CORTEST is called..

A further issue is that we have chosen to assign local structures whose names differ
from the dummies only by being completely in lower case rather than having an initial
capital letter. If you are writing a procedure for anyone to use, you need to realise that the
user can use the CASE option of the SET directive to request that the case of identifiers
be ignored. We guard against this by using SET in line 16 to request that the case be
significant. However, it is bad practice to change the user's own programming

122 9 Programs and procedures

environment, and so we set option RESTORE=case in the PROCEDURE statement in line
1 to ensure that the case sensitivity is restored to its original condition after the procedure
has run. SET allows many different aspects of the Genstat environment to be modified
(details are in the Guide to the Genstat Command Language, Part 1 Syntax and Data
Management, Section 5.6.1), and most of these can be reset by RESTORE. Alternatively,
you can save the environment settings using GET (Guide to the Genstat Command
Language, Part 1 Syntax and Data Management, Section 5.6.2), and restore them
yourself explicitly using SET.

 2 SPLOAD 'Water.gsh'

Loading Spreadsheet File

Catalogue of file Water.gsh

Sheet Type: vector

 Index Type Nval Name
 1 variate 17 Employ
 2 variate 17 Opdays
 3 variate 17 Product
 4 variate 17 Temp
 5 variate 17 Water

 3 POINTER [VALUES=Employ,Opdays,Product,Temp] Vars
 4 CALCULATE Nvars = NVALUES(Vars)
 5
 6 PROCEDURE [RESTORE=case] 'CORTEST'
 7 PARAMETER 'Y','X','Corr','Prob'; \
 8 MODE=p; "default - expects an identifier list "\
 9 TYPE=2('variate','scalar'); \
 10 SET=2(yes,no); "X & Y must be set (but not Corr & Prob)"\
 11 INPUT=2(yes,no); "X & Y only for input (but not ...) "\
 12 DECLARED=2(yes,no); "X & Y must have been declared (but ...)"\
 13 PRESENT=2(yes,no); "X & Y must have values (but not ...) "\
 14 COMPATIBLE=*,'nvalues',*,* "X must have same no. values as Y"
 15
 16 SET [CASE=significant]
 17 ASSIGN [METHOD=preserve] corr,prob; POINTER=Corr,Prob
 18
 19 CALCULATE Corr = CORRELATION(Y; X)
 20 & Nobservations = NOBS(Y + X)
 21 & Abscorr = ABS(Corr)
 22 PRCORRELATION [NOBSERVATIONS=Nobservations] \
 23 Abscorr; CUPROBABILITY=Prob
 24 CALCULATE Prob = 0.5 * Prob
 25 IF Prob .LE. 0.001
 26 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 0.1%';\
 27 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 28 ELSIF Prob .LE. 0.01
 29 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 1%';\
 30 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 31 ELSIF Prob .LE. 0.05
 32 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 5%';\
 33 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 34 ELSE
 35 PRINT [IPRINT=*] 'Correlation',Corr,'Not significant';\
 36 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 37 ENDIF

9.5 Procedures 123

 38
 39 ENDPROCEDURE
 40
 41 FOR [NTIMES=Nvars; INDEX=i]
 42 CORTEST Y=Water; X=Vars[i]
 43 ENDFOR

Correlation 0.413 Probability < 5%

Correlation -0.089 Not significant

Correlation 0.631 Probability < 1%

Correlation 0.286 Not significant

Our final refinement to CORTEST is to define a PRINT option, to illustrate how you can
define options (or parameters) that have string tokens as their settings.

OPTION 'PRINT';\
 MODE=t; "values will be textual strings"\
 VALUES=!t(correlation,nobservations); "defines allowed tokens"\
 DEFAULT='corr'; "defines the default when not set"\
 LIST=yes "whether more than one setting can be given"

Options (or parameters) with MODE=t (i.e. text) expect strings as their settings, rather
than the identifiers that are expected with the default of MODE=p (i.e. pointer). The
VALUES parameter defines the string tokens that are allowed. These are supplied in an
unnamed text structure. If you are writing a procedure for others to use, you should
ensure that they all differ from each other in the first four characters. When you call the
procedure, Genstat will recognise abbreviations of the tokens, and pass their full forms
into the procedure (in the same case of letters that you have used for VALUES). The
DEFAULT parameter supplies the default values (and notice that these too can be
abbreviated). The LIST parameter indicates whether or not the user is allowed to specify
more than one token at a time for a mode-t option. If you specify LIST=yes with a
mode-p option, the option will be supplied as a pointer instead of a dummy. The
PARAMETER directive does not have a LIST parameter (you are not allowed to specify
more than one token for a mode-t parameter).

124 9 Programs and procedures

 2 SPLOAD 'Water.gsh'

Loading Spreadsheet File

Catalogue of file Water.gsh

Sheet Type: vector

 Index Type Nval Name
 1 variate 17 Employ
 2 variate 17 Opdays
 3 variate 17 Product
 4 variate 17 Temp
 5 variate 17 Water

 3 POINTER [VALUES=Employ,Opdays,Product,Temp] Vars
 4 CALCULATE Nvars = NVALUES(Vars)
 5
 6 PROCEDURE [RESTORE=case] 'CORTEST'
 7 OPTION 'PRINT';\
 8 MODE=t; " values will be textual strings "\
 9 VALUES=!t(correlation,nobservations);"defines allowed tokens"\
 10 DEFAULT='corr'; " defines the default when not set "\
 11 LIST=yes " whether >1 setting can be given "
 12 PARAMETER 'Y','X','Corr','Prob'; \
 13 MODE=p; "default - expects an identifier list "\
 14 TYPE=2('variate','scalar'); \
 15 SET=2(yes,no); "X & Y must be set (but not Corr & Prob)"\
 16 INPUT=2(yes,no); "X & Y only for input (but not ...) "\
 17 DECLARED=2(yes,no); "X & Y must have been declared (but ...)"\
 18 PRESENT=2(yes,no); "X & Y must have values (but not ...) "\
 19 COMPATIBLE=*,'nvalues',*,* "X must have same no. values as Y"
 20
 21 SET [CASE=significant]
 22 ASSIGN [METHOD=preserve] corr,prob; POINTER=Corr,Prob
 23
 24 CALCULATE Corr = CORRELATION(Y; X)
 25 & Nobservations = NOBS(Y + X)
 26 & Abscorr = ABS(Corr)
 27 PRCORRELATION [NOBSERVATIONS=Nobservations] \
 28 Abscorr; CUPROBABILITY=Prob
 29 CALCULATE Prob = 0.5 * Prob
 30
 31 IF SUM(!t(correlation,nobservations) .IN. PRINT)
 32 CAPTION 'Correlation test'; STYLE=minor
 33 IF 'correlation' .IN. PRINT
 34 IF Prob .LE. 0.001
 35 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 0.1%';\
 36 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 37 ELSIF Prob .LE. 0.01
 38 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 1%';\
 39 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 40 ELSIF Prob .LE. 0.05
 41 PRINT [IPRINT=*] 'Correlation',Corr,'Probability < 5%';\
 42 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 43 ELSE
 44 PRINT [IPRINT=*] 'Correlation',Corr,'Not significant';\
 45 FIELD=11,7,20; DECIMALS=3; JUSTIFICATION=left
 46 ENDIF
 47 ENDIF
 48 IF 'nobservations' .IN. PRINT

9.6 Practical 125

 49 PRINT [IPRINT=*] 'Number of observations:',Nobservations;\
 50 DECIMALS=0; JUSTIFICATION=left
 51 ENDIF
 52 ENDIF
 53
 54 ENDPROCEDURE
 55
 56 CORTEST [PRINT=*] Y=Water; X=Employ; CORR=Cor; PROB=Pr
 57 PRINT Cor,Pr

Cor Pr
0.4132 0.02480

 58 CORTEST Y=Water; X=Employ

Correlation test

Correlation 0.413 Probability < 5%

In line 31, SUM(!t(correlation,nobservations).IN.PRINT) will be non-zero
(i.e. true) if PRINT contains either of the two tokens. So the this expression checks
whether any printed output is required. In line 32, we use the CAPTION directive to
display a title for the analysis (see Section 4.8 for an explanation). In line 56, we verify
that setting PRINT=* suppresses the printed output, and that we can use the CORR and
PROB parameters to save the correlation and probability. In line 58 we call the procedure
with its default output.

You should now be able to write simple procedures of your own, but to find out more,
you can read the Section 5.3 of the Guide to the Genstat Command Language, Part 1
Syntax and Data Management. The Genstat commands that are used to form a procedure
library are described in Section 3.8.1 of that Guide. Alternatively, the Procedure option
of the Tools menu on the menu bar of the Genstat client has sub-options that allow you
to form a procedure library, and arrange for libraries that are stored in a Genstat add-in
folder to be attached automatically when you run Genstat. (There are two add-in folders:
the "system" folder is alongside the Bin folder that stores the Genstat executable
program; the location of your own "user" add-in folder is defined by a box on the General

tab of the Options menu.) The Genstat client also has a resource language that enables
you to write your own menus for your new procedures. For details, see the Genstat

resource language topic in the Knowledge Base. The new menus then appear as sub-
options of a new option, User, on the menu bar.

9.6 Practical

Convert your program from Practical 9.4 into a procedure, with a parameter DATA to
supply the variate, and parameters MEAN and VARIANCE to save the mean and variance.

Add a PRINT option to control the printed output.

126 9 Programs and procedures

9.7 Other useful commands

Below we mention some of the other Genstat commands that may be useful when you are
writing a procedure. The numbers in brackets are references to sections in the Guide to
the Genstat Command Language, Part 1 Syntax and Data Management.

To declare (i.e. define) data structures, the main directives are
SCALAR scalar (2.2.1)
VARIATE variate (2.3.1)
TEXT text (2.3.2)
FACTOR factor (2.3.3)
MATRIX rectangular matrix (2.4.1)
DIAGONALMATRIX diagonal matrix (2.4.2)
SYMMETRICMATRIX symmetric matrix (2.4.3)
TABLE table (2.5)
DUMMY dummy (2.2.2)
POINTER pointer (2.6)

Others are described in later sections of Chapter 2. If you want to redefine an existing
structure as a different type, you must first delete its existing attributes (including its type)
by using the DELETE with option setting REDEFINE=yes.

Alternatively, to rename a data structure
RENAME renames a data structure, to give it a new identifier

(2.10.2)
To define a data structure with exactly the same attributes as an existing one

DUPLICATE forms new data structures with attributes taken
from an existing structure (2.10.3)

PDUPLICATE duplicates a pointer, with all its components
(2.10.4)

To "convert" values of data structures by putting them into data structures with a
different type

CALCULATE can form matrices using functions like DIAGONAL,
COLBIND, ROWBIND etc (4.2.4), and can form
variates from matrices by using qualified
identifiers (4.1.6)

EQUATE copies values between sets of data structures
(4.3.1)

VTABLE forms a variate and a set of classifying factors
from a table (i.e. converts a table into a data
matrix)

To obtain details about data structures
CALCULATE can provide information about sizes etc using

functions like NVALUES, NVRESTRICTED,
NVRESTRICTED, NMV, NLEVELS, NROWS,
NCOLUMNS etc (4.2.2)

GETATTRIBUTE accesses attributes of data structures such as their
types, sizes etc (2.11.3)

For output
PRINT prints data in tabular form to an output file or a

9.7 Other useful commands 127

text (3.2.1, 3.2.2 and 3.7)
CAPTION prints various types of caption and title (3.2.3)
PAGE moves to the top of the next page of an output file

(3.2.4)
SKIP skips lines of input or output files (3.3.3)
DECIMALS sets the number of decimals for a structure, using

its round-off
CONCATENATE concatenates together lines of text vectors (4.7.1)
TXCONSTRUCT forms a text structure by appending or

concatenating values of scalars, variates, texts,
factors or pointers; allows the case of letters to be
changed or values to truncated and reversed
(4.7.2)

For checking
FAULT allows you to issue a standard Genstat fault,

warning or message (5.4.1)
SETRELATE compares the sets of values in two data structures

(4.3.2)
SETCALCULATE performs Boolean set calculations on the contents

of vectors and pointers (4.3.3)
To run other programs from inside Genstat

SUSPEND suspends execution of Genstat to carry out
commands in the operating system (5.7.1)

This is used by the procedure BXGENSTAT to run WinBUGS or OpenBUGS, and by the
procedure RXGENSTAT to run R.

Figure 10.1

Figure 10.2

10 Further information

Genstat has companion
guides to this one, which
can be accessed (in pdf
format) by clicking on
the appropriate sub-
option of the Genstat

Guides option of the Help

menu (Figure 10.1). The
guides at the top
(Introduction to Survey

Analysis) describe the
use of Genstat's menus
for various types of task.
However, they also give
useful background information and (where relevant) explain the underlying statistical
theory. So, for example, you would find the Guide to Anova and Design a helpful
supplement to Chapter 8 of this Introduction. Here we aim to tell you only how to use the
commands for analysis of variance, In contrast, the Guide to Anova and Design, which
is based on VSN's two-day course on the subject, shows many different types of design,
and explains the underlying statistics. It also covers the analysis of unbalanced designs,
using either the regression or the REML algorithms.

The aim of this Introduction is to give you the necessary skills to write commands and
programs, and the confidence to extend your knowledge from the other documentation
when you want to do something that we have not covered. The best place to look for
more information about the commands is in the bottom section of the Genstat Guides

option, which opens the two Guides to Genstat. Part 1 (Syntax and Data Management)
gives the formal definition of the Genstat language and syntax. It then describes (in
detail, with examples) the facilities for input and output, calculations, manipulation,
programming and graphics. Part 2 (Statistics) covers Genstat's extensive statistical
facilities, again with examples. Two particularly useful chapters are
• Chapter 7 of Part 1, which gives a summary of the statistical facilities, with cross

references to the corresponding sections in Part 2, and
• Chapter 1 of Part 2 ,which gives a summary of the syntax and of the contents of Part

1, again with cross references.
If you want an overview of Genstat's commands, these chapters are the best place to look,
and we do not attempt to duplicate them in this Introduction!

Another useful source of
information is the three-part
Reference Manual, which can be
accessed from the Reference Manual

option of the Help menu (Figure
10.2). The Directives and Procedure

Library sub-options collate the help
pages on the directives and

10 Further information 129

procedures, respectively, into pdf documents. These have the advantage that you can
carry out searches, or print information, on several commands at once. The Summary sub-
option collates the options and parameters of all the directives and procedures (in
alphabetic order), and lists all the functions.

Index

A2WAY procedure 91
Abbreviation 15
of directive name 15, 30
of function name 30
of option name 15, 30, 31
of parameter name 15, 30, 31
of repeated numbers 30
of string setting of option 31

Adjusted R-squared 70
All subsets regression 90
Alphabet order 63
Ampersand 32
Analysis
of spreadsheet 111, 112

Analysis of covariance 93
Analysis of variance 93
Analysis-of-variance table 101
Angular transformation 54
ANOVA directive 93
Appending
into a text 65, 127

Arithmetic operators 51
Arithmetic progression 29
Assumption
for regression 69, 72, 73

Asterisk
as crossing operator 36

Audit 10
Audit trail 108
Auxiliary parameter 15
Backslash 25
Blank character 13
Block structure 98, 99
Block-if structure 117
BLOCKSTRUCTURE directive 99
Boolean arithmetic 65, 127
Bottom stratum 101
Boxplot 6
menu 6

Bracket
round 30
square 15

Brackets in an expression 59
CALCULATE directive 16
Calculations 53
Case 16, 29
Colon
end of statement 25

Comma 13
Command 25, 108
editing 110
running 110

Comment 29

Confounding 105
Constant
in regression 69, 70

Constrained regression 69
Continuation symbol 25
Correlation 70
Covariate 93
Crossing operator 36
Data structure 4
Decimal places 14, 15
Declaration 35
Default value 25, 27
DELETE directive 51
Deleting
text 12

Diagonal matrix 126
Digit 28
Directive 10, 13
Directive name 13, 15
Display
graphics 9

Dot character
as operator 36
three dots 29

Double-quote 29
Dummy 126
Dummy data structure 111
ELSE directive 117
ELSIF directive 117
End
of command 25, 32

ENDIF directive 117
ENDPROCEDURE directive 119, 120
Error (as mistake)
in command 13

Error (as residual)
in regression 68, 73

Error term in analysis of variance 92
Estimates 70
Event Log 14
Excel 43
Exclamation mark 34
EXIT directive 118
Explanatory 69
Explanatory variable 66
Exploratory regression 75
Exponentiation 51
Expression 16
Expression - with lists 56
Factor 126
in expression 59

Factorial operator 36
False value in expression 57

Index 131

Fault message 13
File
menu 11

First parameter of command 13, 15, 25
FIT directive 69
Fitted values
from regression 72

For loop 113
Function
for factors 59

Functions 53-55
Generally balanced design 91
Genstat procedure library 119
Grand mean 97
Graphics
window 6

Grouped data 81
in regression 81

Half-Normal plot 74
Hash symbol 29, 33, 34
Higher-order term 36
Identifier 16, 29
suffixed 33

IF directive 117
Indentation 15
Influential data 72
Input Log 9, 108
Insert key 12
Insert mode 12
Interaction
in analysis of variance 36, 96

Intercept 68, 70
Layout
of output 14

Least significant difference 96
Letter 28
Leverage 72, 78
Line of best fit 67
Linear model 97
List 13, 28
of identifiers 29
of numbers 28, 29
of textual strings 28

Local procedure library 119
Locally weighted regression 90
Log file 9
Logarithms 54
Logical operators 58
Logical tests 57
Logit transformation 55
Long command 25
Loop of commands 115
Margin in output 15
Matrix 126
Maximal model 68, 75
maximum 55
Mean 55

Mean square 70
Median 55
Minimum 55
Missing value 55, 64
in a calculation 56
in analysis of variance 93
in list 29
replacing 57

Model
for regression 68

MODEL directive 68
Model formula 35, 37, 84
Model term 35
Multiple linear regression 75, 90
Multiplication
repetition of numbers 30

Nesting operator 36
Normal distribution 74
Normal plot 74
Null setting in a statement 31
Omission of option and parameter names 31
OpenBUGS
running from Genstat 127

Operator precedence 59
OPTION directive 119
Option of command 14, 25
name 15
setting 28

Options menu 108
Options of a procedure 119
Origin
in regression 69

Output
layout 14
window 12

Overwrite mode 12
Parallel data 14
Parallel output 15
PARAMETER directive 119
Parameter of command 13, 15, 25
name 15
setting 28

Parameter of model 68
Parameters 70
Parameters of a procedure 119
Parenthesis 30
Patterned list 30
Percent character 28
Percentage variance accounted for 70
Pointer 126
duplicating 126

Pointer data structure 33
POINTER directive 33
Post-multiplier 30
Pre-multiplier 30
Precedence of operators 59
Predicted value

132 Index

from regression 72
Primary parameter 13, 15, 25
Prime symbol 28
PRINT directive 11, 25, 27, 29, 31
Printer 11, 15
Probit transformation 55
Procedure 10, 13
defining 119
name 15

PROCEDURE directive 119
Procedure library 119, 125
Procedure name 119
Procedures - using 119
Programming 115
Progression of numbers 29
Quotes
double around comment 29
single around text 28

R
running from Genstat 127

R-squared statistic 70
Random term
in analysis of variance 99

Randomized-block design 92, 98, 99, 101
Record
of commands 9

Recycling
of parameters 25

Regression
assumption 73
constrained 69
fitted line 68
model 68
parameter 68

Relational tests 57
Repeating a command 32
Repetition symbol 32
Residual 70
from analysis of variance 106
from regression 72

Residuals 97
Response 68
Response variable 66
Restricting units of a vector 61
Round bracket 30
Rounding of values 54
Run menu 12, 16
Scalar 30, 50, 126
Semi-colon 15, 28
Serial output 15
Set calculations 65, 127
Set inclusion 58, 59, 61
Significance 70
Significant digit 14
Single quote 28
Slash symbol 36
Slope of regression line 68

Smoothing spline 90
SORT directive 63
Sorting data 63, 64
Space character 13
Split-plot design 36, 104
Spreadsheet
analysis of 111, 112

Square bracket 15
Stacking sets of vectors 65
Standard error
of difference of means 99, 106

Standard procedure library 119
Standardized residual 72
Statement name 25
Status bar 12
Storage
of identifiers 33

Stratum
in analysis of variance 100

Structure 4
Sub-plot 104
Subset of units in a vector 62
Substituting the values of a data structure 29
Substitution symbol 29, 30, 33
Suffixed identifier 33
Summary function 55
Symmetric matrix 126
Syntax of command 10, 25
T-statistic 70
Table 126
of means 96

Tabular output 14
Terminating a command 25, 32
Text 126
changing case 65, 127
forming from scalars, variates, texts, factors or
pointersC 65, 127

suffix of pointer 33
TEXT directive 28
Text structure
in expression 59

Treatment
in analysis of variance 93

Treatment model 97
Treatment term 96
True value in expression 57
Unbalanced design 91
Underscore character 28
Unnamed data structure 34
User-defined menu 125
Variance 56, 68, 74
percentage accounted for 70

Variance ratio 70, 104
Variate 126
VARIATE directive 28, 35
Whole-plot 104
WinBUGS

Index 133

running from Genstat 127
Window
input log 9

Working directory 2

	Contents
	Introduction
	1 Menus and commands
	1.1 Menus
	1.2 Practical
	1.3 Commands
	1.4 Practical

	2 Data structures
	2.1 Variates, factors and texts
	2.2 Practical
	2.3 Forming factors from variates or texts
	2.4 Other data structures
	2.5 Practical

	3 Syntax
	3.1 Syntax of commands
	3.2 Making lists more compact
	3.3 Practical
	3.4 Abbreviation rules
	3.5 Repeating a statement
	3.6 Practical
	3.7 Suffixed identifiers and pointers
	3.8 Unnamed data structures
	3.9 Practical
	3.10 Formulae to define statistical models

	4 Input and output
	4.1 Reading data from text files
	4.2 Practical
	4.3 Reading data from spreadsheet files
	4.4 Practical
	4.5 Exporting data to files
	4.6 Practical
	4.7 Database files
	4.8 Custom output and captions
	4.9 Practical

	5 Calculations and manipulation
	5.1 Calculations
	5.2 Practical
	5.3 Subsets of data values
	5.4 Practical
	5.5 Sorting data
	5.6 Practical
	5.7 Other manipulation facilities

	6 Regression
	6.1 Simple linear regression
	6.2 Practical
	6.3 Multiple linear regression
	6.4 Practical
	6.5 Regression with groups
	6.6 Practical
	6.7 Other regression facilities

	7 Analysis of variance
	7.1 Designs with a single error term
	7.2 Practical
	7.3 Randomized-block designs
	7.4 Plots of residuals
	7.5 Practical
	7.6 Plots of means
	7.7 Split-plot designs
	7.8 Practical
	7.9 Other facilities for anova and design

	8 Using commands with menus or spreadsheets
	8.1 Commands from menus
	8.2 Practical
	8.3 Commands to analyse a spreadsheet
	8.4 Practical
	8.5 Repeating a sequence of commands (FOR loops)
	8.6 Practical

	9 Programs and procedures
	9.1 FOR loops (recap)
	9.2 Block-if structures
	9.3 Exit from a control structure
	9.4 Practical
	9.5 Procedures
	9.6 Practical
	9.7 Other useful commands

	10 Further information
	Index

