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Introduction

Multivariate analysis is useful when you have several different measurements on a set of
n objects. In Genstat the measurements would usually be stored in separate variates, and
these would have a unit for each object. The objects are often regarded as being a set of
n points in p dimensions (p being the number of variates).

Many techniques, for example principal components analysis (Chapter 2) and canonical
variates analysis (Chapter 3) are aimed at reducing the dimensionality. That is, they aim
to find a smaller number of dimensions (usually 2 or 3) that exhibit most of the variation
present in the data. This can help you determine patterns or structure in the data, as well
as identify the relative importance of individual variables. Genstat has several menus for
producing graphical representations, for example principal coordinates analysis (Chapter
4) and multidimensional scaling (Chapter 5). It also has facilities for modelling
multivariate data, including multivariate analysis of variance (Chapter 8) and partial least
squares.

Another important requirement is to take a set of units and classify them into groups
based on their observed characteristics. Hierarchical cluster analysis (Chapter 6) starts
with a set of groups each of which contains one of the units. These initial groups are
successively merged into larger groups, according to their similarity, until there is just
one group containing all the observations. Genstat also provide menus for non-
hierarchical classification (Chapter 7), where the aim is to form a single grouping of the
observations that optimizes some criterion such as the within-class dispersion, or the
Mahalanobis squared distance between the groups, or the between-group sum of squares.

Chapter 9 describes the facilities for constructing classification trees, which allow you
to predict the classification of unknown objects using multivariate observations.
Regression trees, which predict the value of a response variate from multivariate
observations are described in Chapter 10.

Finally, Chapter 11 describes how generalized Procrustes analysis can be used to obtain
a consensus from assessors in activities such as wine tasting.

The book works through a series of straightforward examples, with frequent practicals
to allow you to try the methods for yourself. The examples work mainly through the
menus of Genstat for Windows, so there is no need for prior knowledge of the Genstat
command language. Details of the commands for multivariate analysis can be found in
Chapter 6 of the Guide to the Genstat Command Language, Part 2, Statistics.
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Exploratory data analysis

Before you begin a multivariate | I soesdsneet Polutiongsh o]
: : : : oW ? OWIL 2] anu. 0] L1 rEC]] ay3 ? +
analy81s, it is sensible to - 1] PhoenixI S01213 :?3 - 21fs P;;z . ds - 7.;}5 : Yss El;abel -
investigate the properties Of the z|Little Rock 13 -61 91| 132 s8.2| 48.52 100|Lr |
. 3| San Francisco 12| -56.7| 453| 716| 8.7| 20.88| 673t 3
data by looking at some plots [Denver 7| 15| asa] 15| 5| 1z.55] meov
and summary statistics. 5 H?rtford 56| -43.1| a12| 158 9| 43.37| 127)Hf
. &|Wilmington 36| 54 sa| 80 a| 40.25| 114)vm
We lllustrate SOome Of the 7|Washington 23| -57.3 434 757| 9.3 38.83| 111lWs
. . 8| Jacksonville 14| —68.4| 136] 529) s.8] 52.47] 116)0v
lnSlghtS that can be obtained by 9|Miani 10| -75.5| =207| 335 s| s59.8| 128Mi
examining seven Variables 10|Atlanta 24| -61.5| 368| 497 9.1| 48.34) 115)at
~ . 11| Chicage 110| -50.6( 3324] 3369 10.4] 34.44] 122]em
recorded m 41 towns 1n the 12| Indianapolis 28| -52.3] 361 746 9.7] 28.74] 121|1n
USA, stored in the Spreadsheet [L2I= - :

file Pollution.gsh shownin Figure 1.1

Figure 1.1:
S02 sulphur dioxide
Temp temperature in degrees Fahrenheit
Manuf number of enterprises with 20+ staff
Pop population size in thousands
Wind average annual wind speed (miles per
hour)
Precip average annual rainfall in inches
Days average number of days with rain per year

(For more details, see Everitt, 2005, An R and S-PLUS Companion to Multivariate
Analysis.)

F.II‘S.t we open the ' Su‘m mary Tools Window Fielp
Statistics menu by Cthlng on Summary Statistics 4 Summary 5tatistics...
the Summary Statistics  sub- Statistical Tests 3 Summary of Circular Data...
option of the Summary Statistics Distributions g Diversity...
option of the Stats menu on the Segpresmi At Ml Taly.
. Desi +
menu bar (see Figure 1.2). = Frequency Tables..
Analysis of Variance 3
Summary Tables...
Mixed Madels (REML) 3
Multivariate Analysis k| Correlations...

Figure 1.2



1 Exploratory data analysis

In the menu (Figure 1.3), we
have entered all seven variates
into the Variates box, selected
the required summary statistics
in the Options box, and checked
the Histogram and Boxplot boxes
in the Graphics box. The
resulting output is shown below,
and the plots are in Figures 1.4 -
1.17.

3

& Summary Statistics
Auvailable D ata:

Diigplay

[T Mo of Yalues

[¥] Ma. of Mon-missing Y alues
[] Ma. of Misging Yalues
Avrithmetic Mean

W ariates:

Days o2
Manuf
Pop
Precip
s02
Temp
Wind

(] Mirimum
[] M awirnum
[T ariance
[7] Standard Deviation

By Groups:

[T Range [mas-min)
[¥] Lower Quartile
[¥] Upper Quartile
[ Sum of Yalues

Graphics
[¥] Histogram [] Bowplat [ Stern and Leaf
[ Marmal Plot [7] Dat Histogram
K7 @ [ Run ] I Cancel ‘ I Defaults l Save...

Figure 1.3

Summary statistics for Days

Number of observations = 41
Number of missing values = 0
Mean= 113.9
Median = 115
Minimum = 36
Maximum = 166
Lower quartile = 102.2
Upper quartile = 128.2
Standard deviation = 26.51

Summary statistics for Manuf

Number of observations = 41
Number of missing values = 0
Mean = 463.1
Median = 347
Minimum = 35
Maximum = 3344
Lower quartile = 170
Upper quartile = 488.8
Standard deviation = 563.5

Summary statistics for Pop

Number of observations = 41
Number of missing values = 0
Mean = 608.6
Median = 515
Minimum = 71
Maximum = 3369
Lower quartile = 293.5
Upper quartile = 723.8



4 1 Exploratory data analysis

Standard deviation =

579.1

Summary statistics for Precip

Number of observations =
Number of missing values =
Mean =

Median =

Minimum =

Maximum =

Lower quartile =

Upper quartile =

Standard deviation =

41

0
36.77
38.74
7.05
59.8
30.93
43.17
11.77

Summary statistics for SO2

Number of observations =
Number of missing values =
Mean =

Median =

Minimum =

Maximum =

Lower quartile =

Upper quartile =

Standard deviation =

41

0
30.05
26

8

110
12.75
35.25
23.47

Summary statistics for Temp

Number of observations =
Number of missing values =
Mean =

Median =

Minimum =

Maximum =

Lower quartile =

Upper quartile =

Standard deviation =

41
0
-55.76
-54.6
-75.5
-43.5
-59.32
-50.55
7.228

Summary statistics for Wind

Number of observations =
Number of missing values =
Mean =

Median =

Minimum =

Maximum =

Lower quartile =

Upper quartile =

Standard deviation =

41
0
9.444
9.3

6
12.7
8.7
10.6
1.429




Tools Window Help

1 Exploratory data analysis

FHID: -BEEDR O HWN MY o 100%
Histogram for Days
[Loessie ickonpo o it NOM

Figure 1.4

(1 R
File Edit View Tools Window Help

FHID -BEEDH O HWN MY © 100%
Histogram for Manuf
[Loeusi ickonpo o it NOM

Figure 1.6

File Edit View Tools Window Help
FHID: -BEEDR O HRN MY o 100%
Histogram for Pop
[Loeusie ickon o o it NOM

Figure 1.8

File Edt View Tools Window Help

FH@® -

CEAEPDE O h N RN

G 100%

Boxplot for Days

160 4

1404

120

100

1=

Figure 1.5

File Edit View Tools Window Hep
FHID: -BE DR O HWNDNY o 100%
Boxplot for Manuf
3500
Chicago
3000
2500
2000
*Philadelphia
1500
I 1000
500
04
Manuf.
‘ i '
[Loessi ickon oo it NUM

Figure 1.7

File Edit View Tools

Window _Help

FH@® -

L BEIBE O 6@ DY

G 100%

Boxplot for Pop

3000 4

2500

1500
! 1000

5004

xChicago

Detroit

| TR

Figure

1.9
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i 0

File Edit View Tools Window Hep File Edit View Tools Window Hep
FHEb: -~ SN EFB @R LXK | o o FHEb: -~ SN FBY @WK NN | oo 1o
Histogram for Precip Boxplot for Precip
60
15
1504 50
1254
404
10.0
30
75
| 50 l 204
25 ,‘I
10
Blhugaerave
0.0
Precp
‘ i v « i '
| TS NOM [Loessi ickon oo it NUM

Figure 1.10 Figure 1.11

File Edit View Tools Window Help Edit View Tools Window Help
SHIR: - SaEFDTF @@ RN © 100% SHIR: - SEEDH @@ RN ¢ 100%
Histogram for SO2 Boxplot for SO2
- Chicago
100
il Providence
1254 80
100 60
75
P
l 50 |
25 20 ,‘I
0.0
s02
‘ i v « i '
| TS NUM [Loessie ickon oo it NUM

Figure 1.12 Figure 1.13

Window_Help Fle Edt View Tools Window Hep
FHOB:. GEEBH @R KL o 1% CHOD: - GEEBT GO UNE | o

File Edit View Tools

Histogram for Temp Boxplot for Temp

454

554

Miami

Temp

« i ' « 0 '

Figure 1.14 Figure 1.15




1 Exploratory data analysis 7

Help
CEAEPRH SaWWRNY| g 100%

i
File Edit View Tools Wing
FH@® -

Histogram for Wind

[Double-click on plot to edit it NUM

Figure 1.16

Boxplot for Wind
10
9

Wind

[Double-click on plot to edit it NUM

Figure 1.17

The main thing to notice in the plots and statistics show that the variables are on very
different scales —and we will need to remember this in the later multivariate analyses.

To study the inter-relationships
between the variates, we can select
the Scatter Plot Matrix option of the
Graphics menu on the menu bar. In
the resulting menu (Figure 1.18), we
just need to select the variates to
plot and click on Run. The plot is
useful for showing variates that are
positively and negatively correlated,
extreme observations and any
clusters of the units.

The pollution data are plotted in
Figure 1.19).

Scatter Plot Matrix

o=

Data |

Awailable data:

Drata wariates:

Daps
I aruf
Pop
Frecip
<53
Temp
Wind

Grouping factar:

GIE

[ Run ]’ Canhcel ” Defaults]

Figure 1.18
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File Edit View Tools Window Help

FHIR. S FBH SawN B

3500
3000
2500 -
2000
1500 %

1000 % x
800 X

0
3500

3000 -
2500 -
2000 x 2%
1500 — x
1000
500 -

Manuf

Pop
x

3
X
b4

0
60

50

40 4 %
30 ’§<m%
204 x

10 #

Precip

100
80
60 %
40 X%
20

SO
%
Poc
x)(><
ol | %
%R x %4
M K XK,
x 2%
B xxx =
*

Temp
<
5
*

m

|

x
| ]
3

Wind
&
x
X
R
=

40 =
G0 =
80
100 =
120
140 =
160
0 -
500 -
1000
1500 <
2000 —
2500
3000 -

Days Manuf

4

Double-click on plot to edit it

Figure 1.19

1.1 Practical

Genstat spreadsheet file Exam.gsh
(Figure 1.20) contains examination
marks for 88 students in the subjects
Mechanics, Vectors, Algebra, Analysis
and Statistics. (For details, see Mardia,
Kent and Bibby, 1979, Multivariate
Analysis, Academic Press, London.)
Print summary statistics and plot graphs
to study the data.

[ Spreadsheet [Exam.gsh] o lla s
Row | Mechanics WVectors Algebra Analysis Statistics

1 82 67 67 5 |

2 63 78 80 70 81 |E|

3 T3 13 71 66 81 f

4 55 72 63 70 68

5 63 63 65 70 63

& 53 61 72 64 73

7 51 &7 65 65 68

8 59 70 68 62 56

3 6z 60 58 62 T0

10 64 T2 60 62 435

11 52 64 60 63 54

12 55 67 59 62 L |
[ 2] < | m [

Figure 1.20




2  Principal components analysis

A major problem with multivariate data is that there are generally too many variates for
you to be able to visualise the properties and inter-relationships of the data units easily.
Principal components analysis (or PCP) provides one way to overcome this “curse of
dimensionality". It aims to find linear combinations of the data variates that contain most
of the variation between the units. The combinations (or principal components) indicate
relationships between the variates, and also define planes in multi-dimensional space
where the relationships between the units can be studied effectively. We shall illustrate
this using the pollution data from Chapter 1.

The Principal Components Analysis
menu (Figure 2.1) is obtained by
clicking on the Principal Components

” Principal Components Analysis
dyvailable Data:

=N EcR "<

Data to be Analysed:

Days Days
line in the Multivariate Analysis gf;“f g‘;';“f
section of the Stats menu on the g::'fgil:' $recip
menu bar. You first need to enter i wird

the data variates into the Data to be
Analysed window. Here we have
chosen to enter all of the variates
except sO2, which we will be
treating as aresponse variate later in
this Guide.

One important issue is to decide
whether to base the analysis on
sums of squares and products, or
variances and covariances or
correlations. The first two produce

TemE

Analyziz bazed on

= @ | Cancel l| Defaults |

1 Sums of Squares and Products
"1 Wanance-covanance Matrix
@ Correlation Matris

Fiotate Loadings....

l Fiun ] I Optiohz... ] Save...

Biplat...

essentially the same analysis (there
is just a common scaling of V(n-1)

Figure 2.1

applied to the variates, to convert from sums of squares to variances). The final setting,
Correlation Matrix standardizes each variate (by subtracting its mean and dividing by its

standard deviation). This can be very useful
if the variates do not share a common scale
and show very different amounts of
variation.

In the pollution data set, the variates are
not only on different scales (see Chapterl),
they are of inherently different types. So we
have chosen to use the correlation matrix
(which Genstat will calculate for us
automatically, from the variates).

Clicking on the Options button produces
the Principal Components Analysis Options
menu (Figure 2.2), which controls the
printed output from the analysis. We have
set Display box to print Latent Roots and

Principal Component Analysis Options &J
Dizplay

[¥] Latent Fioots [T Besiduals

[¥] Loadings [ Significance Tests
[T Scores [7] Seree Diagram
Mumber of Dimensions: E
Graphics

] Scatter Plat Matrix of Principal Component Scores
Dizplay Labels
[¥] Scree Plat

@ [

Figure 2.2

H Cancel H Defaultz




10 2 Principal components analysis

Loadings, we have requested a scree plot, and we have set the Number of Dimensions box
to 6 which will give all the available latent roots and vectors. If you choose to have less
than the full number of dimensions, the Residuals check box can print residuals
representing the information in the dimensions that have been excluded. The Number of
Dimensions setting also applies to results saved from the Principal Components Save Options
menu, which is obtained by clicking on the Save button on the Principal Components
Analysis menu.
The output is shown below.

Principal components analysis

Latent roots

1 2 3 4 5 6
2.196 1.500 1.395 0.760 0.115 0.034

Percentage variation

1 2 3 4 5 6
36.60 25.00 23.24 12.67 1.91 0.57
Trace
6.000

Latent vectors (loadings)

1 2 3 4 5
Days 0.23792 0.70777 0.09309 0.31131 0.58000
Manuf 0.61154 -0.16806 -0.27289 0.13684 -0.10204
Pop 0.57782 -0.22245 -0.35037 0.07248 0.07807
Precip -0.04081 0.62286 -0.50456 -0.17115 -0.56818
Temp 0.32965 0.12760 0.67169 0.30646 -0.55806
Wind 0.35384 0.13079 0.29725 -0.86943 0.11327
6
Days 0.02196
Manuf 0.70297
Pop -0.69464
Precip -0.06062
Temp -0.13619

Wind 0.02453




2 Principal components analysis 11

The first principal component defines the direction in which the towns exhibit the
greatest variation. The second component defines the direction with the greatest variation
of the directions orthogonal to the first component. The third component defines the
direction with the greatest variation of the directions orthogonal to the first two
components, and so on. Here, the first component contains about 37% of the variation,
and the first and second components contain about 62%.

It is often interesting to interpret the directions. Those with mainly positive or mainly
negative loadings represent “averages” while those with a mixture of signs represent
“comparisons". Here, the first component is in the direction

0.23792 X Days + 0.61154 x Manuf +0.57782 X Pop

- 0.04081 x Precip + 0.32965 X Temp + 0.35384 X Wind
and seems to represent “quality of life". The second component is

0.23792 X Days + 0.61154 x Manuf +0.57782 X Pop

- 0.04081 x Precip + 0.32965 X Temp + 0.35384 X Wind
and seems to be related to the wetness of the climate.

We have not printed the significance tests for equality of the final K roots as these
cannot be used when the analysis is based on correlations. When the analysis is based on
variances or on sums of squares, they can be useful for deciding how many roots are
needed. Asymptotically (that is, as the number of units becomes large) these have chi-
square distributions. However, this is not true for analyses based on correlations. To use
the tests, we start by testing for equality of all the roots, then all except the first, all except
the first and second, and so on, until the test is non-significant. The rationale is that, if we
are to omit the final dimension, we should also omit all dimensions that are no more
variable than that dimension.

An alternative, visual way of deciding [
how many roots are needed is to0 |swon. sSsceassasvivr
examine the scree plot. The plot for the Scree Plot
pollution data, shown in Figure 2.3,
shows the pattern that you would hope
to find, with a clear jump up from the 8]
final roots (with low eigenvalues) to the
earlier roots (with larger eigenvalues).
This is more in line with the attitude |
that significance tests are not really
relevant if you view principal vl
components analysis mainly as a
descriptive technique, where the aim is
to find dimensions in which you can
most effectively study the inter-
relationships of the data units.

204

Eigenvalue

Double-click on plot to edit it - NUM

Figure 2.3
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Here it seems that four PrinCipal Principal Component Analysis Options M
components are needed. So, we change the Biisnlan
number of dimensions in the Principal [ Latent Raots [ Residuals
Components Analysis Options menu to four, [P Loadrigs [ Significance Tasts
check the box to plot the principal [ 5eores [F] Scree Diagram

component scores, and select Label to

Mumber of Dimensions:

4

label the points. Clicking on OK here, and
then Run in the Principal Components Analysis
menu, produces the plot in Figure 2.5.

Graphics
Scatter Plot Matrix of Principal Component Scores

Dizplay Labelz Lahel o
[T Scree Plat
[ ] J I Cancel l [ Diefaultz
Figure 2.4

FHARY S EDIT A& @R RN U 100% |
oy
&
o
s
O
-
?
Q
o
-4 -
T T T T T T T T T T T T T T
o o o = © + o o ] <+ o o o~ <+
PC-1 PC-2 PC-3 o
| « [m | b
Double-click on plot to edit it MNUM

Figure 2.5

The menu uses the PCP directive, which is described in Section 6.2.1 of the Guide to the
Genstat Command Language, Part 2 Statistics.
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2.1 Principal-component biplot

Several of the multivariate analysis  [520 =
menus have a Biplot button, that

becomes available once the analysis || Avidlepam:  Deplayinpet
. . Label || Convex hull
has been run. Biplots provide a Town
. . Type of
convenient way of assessing the f’ic’j’;&s .
. . . o e @ Fredicave ) Interpolatve

relationships between the individual
observations in the analysis (here Multipler for vector loadings:
the towns), and their characteristics Labels for individals {ST‘:T’ -

. . . ) None () Unit labels (! Mumbers
with respect to the variables in the _ e
d ta @) Labels: | Label

ata.

Cllelng on the button in the Labels for variables (biplot axes)

L. . () None @) Identifiers () Numbers
Principal Components Analysis menu _
opens the menu in Figure 2.6, which e
has options to control the labelling Grouping factor:
of the plot, and the way in which the [ R | [ concel

variables are represented. Here we
enter the text vector Label to Figure2.6

provide labels, and click on Run to

produce the graph in Figure 2.7.

The display plots the individuals in the space defined by the first two dimensions of the
multivariate analysis (from a PCP these will be the first two principal components). The
plot also contains an “axis” for each variable (its biplot axis) that allows you to see how
each individual's projection into this plane relates to its value for the variable concerned.
Figure 2.7 shows the default, predictive axes. These show the values of the variables that
are predicted by the projection into 2-dimensions that is defined for each point by the
analysis; essentially this is done by taking an orthogonal projection of the point onto each
the biplot axis. Genstat defines a Aot point at the point for each individual. If you click
on the hot point icon at the left-hand end of the Graphics Toolbar, and then click on one
of the points, lines will be drawn from the point to the predictions. In Figure 2.7, we have
done this for Phoenix, so you can see how this differs from the other towns. The lines can
be removed again by clicking on the hot point a second time.

The angles between the biplot axes represent the correlations between the variables,
and lines in opposite directions indicate negative correlation. So here we can see that
temperature and wind have a strong negative correlation. The % variance of the principal
components show the extent to which the plot summarizes the entire data set.
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File Edit View Tools Window Help

SHIR. - SEIRE e @K RN o 100% s

Principal components biplot (61.6%)

o8
wn
&
| b2y ; _|
O H if =
a
p Fi
V- Aq |
(" A N
A .

PC-1 (36.6%) A
| « [—T— ’
Ready x=-24,y=-43  x=158,y=245 NUM

Figure 2.7

The alternative, interpolative axes show the values of the variables that would lead to a
point being placed at the position of the selected point on the graph. So here the point is
being predicted by the variables, rather than the variables by the point. This is done by
taking the sum of a set of vectors, one in the direction of each variable, with lengths equal
to the values of the variables for that point. To obtain interpolative axes, you should
select the Interpolative button from the Type of Axes radio buttons in the Biplot menu.
The Biplot menu uses the DBIPLOT procedure, which is described in Section 6.16.1 of

the Guide to the Genstat Command Language, Part 2 Statistics.
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2.2 Practical

Genstat spreadsheet file Exam.gsh | [ Spreadsheet (Exam.gsh] =R

(Flgure 28) Contalns examlnatlon Row KE‘Chanlca Vectors | RAlgebra | Analysis Statistics ||+

. . 1 7 7| 82 67 67 5N |

marks for 88 students in the subjects - = = = = v [
Mechanics, Vectors, Algebra, Analysis 3 73 73 7 56 B1
and Statistics. (See Practical 1.1 and - = = = = =
. . 5 63 63 65 T0 63
Mardla, Kent and Blbby, 1 979, 5 53 61 72 64 73
Multivariate Analysis, Academic Press, L ol 24 L 5 o8
L d ) 8 59 70 68 62 56
onaon. 9 62 60 a8 62 70
Perform a principal components 10 54 72 50 52 15
. . 11 52 64 &0 63 54

agalysls. How Wpuld you interpret the — = 5 = 5 al

directions in which the student marks G = = SiE

exhibit the greatest variation? How
important is Statistics in distinguishing
the abilities of the students?

Display a biplot from the analysis, and use the hotpoints to see how the strongest and
weakest students differ from the other students.

Figure 2.8



3  Canonical variates analysis

Canonical variates analysis is |Esrcdbsheamen =R
. . . Row | Sepel Length | Sepel Width | Petal Lemgth | Petal Width || Species ||4]
appropriate when the units are classified . 51 s i =N |
: : : : 2 4.9 3 1.4 0.2|Setosa
into groups. The aim is to find linear - — — = P
combinations of the data variates that : e > = 0:2j5etoms
represent most of the variation between ‘ 5.4 3. 17 0.1/setoma
7 4.6 3.4 1.4 0.3|Setosa
the groups (rather than between the 5 e 15 5 2[sevoma
. . . . . . . L] 4.4 7.9 1.4 0.2|S5etosa
individual units, as in principal — o = = e
components analysis; Chapter 2). We = o e . 0.2 satom
illustrate the analysis using a classic |EF- ¥

data set, Fisher’s Iris Data, which Figure 3.1

consists of measurements of sepal and

petal lengths and widths on iris plants of three different species. This is available in
Genstat spreadsheet Iris.gsh (Figure 3.1).

The Canonical Variates Analysis menu W oot Vanates Anaiye =
(Figure 3.2) is obtained by clicking on Available Data: i

Data to be Analyzed:

the Canonical Variates line in the Pet: Sepal_Length
) . . . Fet it Sepal Width
Multivariate Analysis section of the Stats Sepal_Length Petal_Length
Sepal_width Petal_width

menu on the menu bar. You need to

enter the data variates into the Data to be ‘:‘
Analysed window, and the factor
defining the groups into the Grouping
Factor window. Clicking on the Options -

button produces the Canonical Variates Grouping Factor:

Analysis Options menu, which controls |

. . Run Optiong... Save.,
the printed output from the analysis. I ]
K |E [ Cancel l I Defaults ] Biplat...
Figure 3.2
. M = =]
In the Opthl’TS menu (Flgure. 33)’ we Canonical Variates Options ﬁ
have set the Display box to print Latent -
izplay
Roots, Loadings, Canonical Variate Means o
; . . |¥] Latent Roaots || Significance Tests
and Distances. The Number of Dimensions o — , ,
. . . . || Loadings || Canonical Wariate Means
box is set to 2, which is the maximum —
. || Residualz || Digtances
possible here as there are only three o
. L. Humber of Dimensions: 2
species of iris in the data set. If you
choose to have less than the full number Graphics
of dimensions, the Residuals check box [V Canaical Variate Plot

can print residuals representing the ARG, | ] TP, [

information in the dimensions that have
been excluded. The Number of
Dimensions setting also applies to results
saved from the Canonical Variates Save x| [@) [ oK) [ Concel | [ Defaus
Options menu, which is obtained by [ —
clicking on the Save button on the Figure 3.3

[7] Display Confidence Fiegions
@ Means ) Populations

Confidence Limit [%]: 95
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Canonical Variates Analysis menu. The Graphics section of the menu is set to plot the data
with the first canonical variate along the x-axis, and the second along the y-axis.
The output from the analysis is shown below.

Canonical variate analysis

Latent roots

1 2
32.19 0.29

Percentage variation

1 2
99.12 0.88
Trace
32.48

Latent vectors (loadings)

1 2
1 0.829 0.024
2 1.534 2.165
3 -2.201 -0.932
4 -2.810 2.839

Canonical variate means

1 2
1 7.608 0.215
2 -1.825 -0.728
3 -5.783 0.513
Adjustment terms
1 2
1 -2.105 6.661
Inter-group distances
1 0.000
2 9.480 0.000
3 13.393 4.147 0.000
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1

2

3 Canonical variates analysis

3

The results show that 99% of the between-group variation is in the direction of the first

canonical variate:

0.829 x Sepal-Length + 1.534 x Sepal-Width - 2.201 x Petal-Length

- 2.810 x Petal-Width

(using the coefficients in column 1 of the latent-vectors matrix). This is confirmed by the

plot in Figure 3.4.

The matrix of canonical
variate means presents the
coordinates (or scores) for each
group in the direction of each
canonical variate. These are
adjusted so that the centroid of
the points, weighted by sizes of
the groups, is at the origin. The
adjustment term for each
canonical original variates in
order to achieve this. (See Guide
to the Genstat Command
Language, Part 2 Section 6.3.1
for more details.)

3.1 Practical
Genstat spreadsheet file
Skull.gsh (Figure 3.5)

contains data on 150 male
Egyptian skulls from five
different epochs (see pages 4
and 5 of Manly, 1986,
Multivariate Statistical Methods
a Primer, Chapman & Hall,
London).

Perform a canonical variates
analysis. Plot the first two
canonical variates and study

(il GenStat Graphics Viewer _Unnamed 1 o B |
File Edit View Took Window Help
FHg e & & B oho@ W N2 R 0 130%
3
o
24
+ o+
”
5
™ + Ty o
o 1 1 5
= a ok
.g T+
= 1+ el
o } T
+ »Betosa
= o4 wt B 4
S g 3 Ier
| + e it
g » grverswn\or %‘H
* o+
-1 - + 0
S : “3
+ +
+ 4 f
e
+ ¥
+
2 + o+ +
+
T T T T T T T T
-10.0 -7.5 -5.0 2.5 0.0 25 5.0 7.5 10.0
‘ Canonical variate 1
|
I
. i -
Double-click on plot to edit it NUM
Figure 3.4
g .
[ Spreadsheet [Skull.gsh] =[]
Row |1 Epoch ¥ B cHeight |Basiclveolarlength| NasalBeight :]
g Farly predynastid] 131 138 89 |
2|ar1ly predynastic 125 131 92 as||=
3|Rar1ly preaynastic 131 132 99 50
4|Early predynastic 119 132 96 a4
5|Early predynastic 136 143 100 54
6|Barly predynastic 138 137 89 56
7|Early predynastic 139 130 108 48
8|Early predynastic 125 136 93 18
a|Rarly preaynastic 131 134 102 51
10[Barly predynastic 132 134 99 51
11|Early predynastic 129 138 95 50
12|Early predynastic 134 121 95 53
13|Rarly predynastic 126 129 109 51
14|Early predynastic 132 136 100 50
15|Early predynastic 141 140 100 51
16|Barly predynastic 131 134 97 54
2 = b
.
Figure 3.5

how the skulls differ between epochs.




4  Principal coordinates analysis

Principal coordinates analysis |@ Principal Coordinates Analysis o | @
differs from principal components | avaiatis Data: Esioniclion N [ ]
and canonical variates analysis in Al

that the focus is more on the data @ Sirilaiities

units than the data variables. So the ) Dissimilarities [Distances)

basic input is a symmetric matrix

representing the ‘“‘associations” | Fom Similary Matis.. |
between the data units. The menu Py

(Figure 4.1) has radio buttons that

you can use to specify how the the —r—yTTT
associations are supplied. <[] | Cancel | [ Defauts |

Similarities are on arange from zero
(completely different) to one Figure4.1
(absolutely identical). The
alternative is to specify dissimilarities or distance which are zero when the two units are
identical. Distances d are converted automatically to similarities s by the menu, using the
transformation

s = -d
(See the Guide to the Genstat Command Language, Part 2, Section 6.10 for more
information.)

[ Spreadsheet [Voting.gsh] Symmetric Matrix Diffvote = 2 =)
Row [T Nane Hunt | Sandran | Howerd | Thorpson | Frel Forsythe | Widnall | Roe | Helstoki | Bodino | Minish | Rinaldo | Maraziri | Daniels Par.r.en
1|Hunt m 2
2| sandman 8 o
3|Howara 15 17 [}
4| Thompson 15 12 9 [}
5|Frelinghuysen 10 13 16 14 o
&|Forsythe . 13 12 12 8 o
7|Widnall 12 15 13 9 7 1]
&|Roe 15 16 5 10 13 12 17 o =
9|Helstoki 1e 17 5 8 14 &8 16 4 o
10|Rodine 14 15 3 [} 12 10 15| s 3 [}
11|Minish 15 16 5 8 12 L) 14 5 = 1 a
12|Rinaldo 16 17 4 6 12 10 15 3 =5 2 1 L]
13|Maraziti 7 13 11 15 10 6 10 12 13 11 12 12 L]
14|Daniels 11 12 10 10 11 6 11 2 g : L 5 6 ] o
15|Patten 13 16 7 7 11 10 13 6 5 6 5 4 13 5 o =
[2lF] « i iy
.
Figure 4.2

As an example, spreadsheet file Vvoting.gsh contains the number of times that 15
congressmen from New Jersey voted differently in 19 environmental bills (see Table 10.3
of Manly, 1986, Multivariate Statistical Methods a Primer, Chapman & Hall, London).
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We shall analyse these as
similarities, and so we first use
the Calculations menu to convert
the differences to proportions of
times that they congressmen
voted in the same way i.e.

(19-Diffvote) /19

(see Figure 4.3). We then enter
the resulting symmetric matrix,
Similarity, into the
Association Matrix box in Figure
4.1.

4 Principal coordinates analysis

"‘] Calculate |E| . El -
[[19- Diffvote ] /19 |
A’\jilable Data D E] e =

|| Wariates
[C] Factars B B m @
[C] Teuts ¢ [e=|] 5| ]s= ¢ i
[ Scalars .
[V] Matrices E = E] -m st
1ot
Save result ir: |Simi|arity | [ Diigplay in Output
[Tl Display in Spreadsheet: | Mew Spreadshest
"] | Run | [ Cancel ] [ Options... ] [ Defaulte

Figure 4.3

The Principal Coordinates Analysis Options
menu (Figure 4.4) allows you to select the
output to display, and specify the number of
dimensions to fit. Here we have chosen to

=
Principal Coordinates Analysis Options

===

Drigplay

[¥] Latert Roots [T Rresiduals

fit only two dimensions.

[T Scores [] Certroid Distances
Mumber of Dimenzsions: 2
Graphicz

[V] Scatter Plot Matrix of Scores

[] Display Label:

Mame -

®@ |

Ok

]| Cancel H Defaults

Figure 4.4

Principal coordinates analysis

Latent roots
1 2
2.824 0.972
Percentage variation
1 2
38.22 13.15
Trace

7.389
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In interpreting the plot (Figure 4.5), it is interesting to note that congressmen Daniels,
Helstoki, Howard, Minish, Patten, Rodino, Roe and Thompson were Democrats, while
congressmen Forsythe, Frelinghuysen, Hunt, Maraziti, Rinaldo, Sandman, Widnall were
Republicans.

'_..GenStat Gﬁpl‘_li.‘_ﬁ ew

[ File Edit View Tools Window Help

= JH g S rESEERE Ga @R B o 100%
0.4
< mrie rsythe
0.2 « Frelinghuysen
» Daniels
« Minish
«Widnall ? Eisiohig .
xRoe 252
0.0+ ] Hawarclx ﬁg' SI
= Hunt » Patten
i
g
|| 024
El
|
=
4
0.4 4
»* Thampson
0.6 <
* Sandman
1 I Ll I L Ll
@ =+ o =) o +
? o O‘ k=] L= =]
PC-1 -
| « [ *
Double-click on plot to edit it MNUM
Figure 4.5
4.1 Practical
G enstat Spre adshe et fl 1 (§] (Haponsin e s gobiagi E=Eo )

Row 1 2 3 1 5 3 7 B 3 10 ﬂ
o

1.36748 o ‘

Galaxy.gsh (Figure 4.6) :
. . 2
contains distances between ten 3| ©.40e66] 0955030 5
types of Galaxy. Use principal 5[ 202257 3 .51505] 1205 o omeen| o

n

Coordinates analysis to represent 2.315948 1.84662| 1.77482 1.36382| 1.12694 o
them in three dimensions.

2.65141| 1.96214 1.8 1.5] 1.37477| 1.42127 1}

2.45357| 2.20227| 2.02731| 1.73205| 1.45945| 1.30767| 1.20416 0

2.62298| 2.38747| 2.26274| 1.92873| 1.73494| 1.72337( 1.32288| 1.06301 0

10| 2.02978| 1.94165| 1.96469| 1.98242| 1.80831| 1.94165| 1.87617( 1.67033| 1.81384 0O

2w ¢ | T v g

Figure 4.6



S5  Multidimensional scaling

Multidimensional scaling operates on a symmetric matrix which is assumed to represent
distances between a set of units. It aims to construct coordinates of points, in a defined
number of dimensions, whose distances are approximately the same as those in the
original matrix. To illustrate the analysis we will try to recreate the locations of some
British towns, based on figures for the shortest distances between each of them by road.
The data are in the Genstat spreadsheet Roaddist . gsh (Figure 5.1). This is a symmetric
matrix spreadsheet (as shown by the blanks above the diagonal).

[E Spreadsheet [Roaddist.gsh] Symmetric Matrix Distances E’E

Row T Name Aberdeen Aberystwyth Birmingham Blackpool Bournemouth Bristol Cardiff | Carlisle Dover | Edinburgh | Exeter ﬂ
1|Aberdeen [o] o
2|aberystwyth 445 o
3|Birmingham 420 114 0
41Blackpool 308 153 123 o
5|Bournemouth 564 207 147 270 o
é|Bristol 499 125 81 204 82 1]
7|Cardiff 505 105 103 209 117 45 o =
g8|Carlisle 221 224 156 87 343 277 289 o
8| Dover 588 292 194 312 174 202 238 389 o
10|Edinburgh 125 320 2937 183 438 373 385 =13 462 0
11 |Exeter 564 201 157 282 82 76 121 353 248 450 0
12|Fishguard 204 56 170 209 222 154 112 297 331 399 230 4
13|Fort William 148 430 332 296 538 486 485 206 596 144 560
14|Gloucester 468 102 56 174 85 35 56 247 191 345 111
15|Great Yarmouth 517 294 180 252 240 275 284 3z0 185 386 335
16|Harwich 535 281 187 275 187 217 246 336 125 413 273
17|Holyhead 439 111 148 141 288 206 216 231 360 333 282
18| Inverness 105 486 458 348 587 539 549 262 622 158 618
13| John O Groats 232 601 574 478 724 668 680 391 747 285 744 oL

[ 2] ¢ . 3

.

Figure 5.1
The Multidimensional Scaling menu is | & Mutidimensional Scaling [E=8

obtained by clicking on the |f&e=Esee Distance Mali

Multidimensional Scaling line in the Melod

@ Mon-metric Scaling [Monotone Regression]

Multivariate Analysis section of the ") Metic: Scaling (Linear Regression]

Stats menu. In Figure 5.2, we have T

entered Distances as the distance il ] [ 5o-.
matrix to use, and set the required =) [x] EEEm T

number of dimensions to 3.
The algorithm starts with an Figure 5.2

initial configuration of points which

itthen modifies using a method known as steepest descent, until no further improvements
are possible (see the Guide to the Genstat Command Language, Part 2 Section 6.12). To
evaluate the configuration, it does a regression of the inter-point distances, calculated
from the current configuration, against the supplied distances. The Method setting on the
menu controls whether this is a “monotone regression” (which corresponds to what is
known as non-metric scaling) or an ordinary linear regression (corresponding to metric
scaling). It then compares the fitted distances from the regression with the original
distances using a quantity known as the stress.
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The Scaling section of the rMl.,lltid|'r'm=.lnsi\'.:rna|IScalfng Options Lﬁj
Multidimensional Scaling Options Display Treatment of Ties
menu (Figure 5.3) allows you to. || £ peeeetp
specify what to display from the V] Coordinates ] Moritoring ©) Tettary
analysis. Here we have asked to 0
display the latent roots and the @ Least Squares gt e
coordinates. It also controls whether () Least Squares Squared
the stress is calculated on a least- Mumnber of Starting Configurations: 1
squares scale, a least-squares- Graphics
squared scale or a logarithmic scale. |hae R LA e
The Treatment of Ties section of the Dispiagkabals
options menu allows you to vary the x| [@ 5] (ot | [(otats

way in which tied values in the
supplied distances are treated. With  Figure 5.3
the Primary setting, no restrictions
are placed on the inter-point distances corresponding to tied distances. In the Secondary
setting, the inter-point distances corresponding to tied distances are required to be as
nearly equal as possible. The Tertiary setting is a compromise between the primary and
secondary approaches to ties: the block of ties corresponding to the smallest distance are
handled by the secondary method, and the remaining blocks of ties are handled by the
primary method. This is particularly useful when the supplied distance matrix contains
only a distinct values. Further information is given in the Guide to the Genstat Command
Language, Part 2 Section 6.12, which describes the MDS directive that is used by these
menus. The directive also has some additional facilities, for example the ability to try
several automatically-generated initial configurations, or to supply your own.

If we click on OK here, and on Run in the Multidimensional Scaling menu itself, Genstat
produces the output below.

Message: Default seed for random number generator used with value 33633

Multidimensional scaling

Least-squares scaling criterion

Distances fitted using monotonic regression (non-metric MDS).
Primary treatment of ties.

Coordinates

1 2 3

Name
Aberdeen -1.5498 -0.1754 -0.0455
Aberystwyth 0.3087 0.3597 -0.3365
Birmingham 0.3114 -0.0462 -0.0424
Blackpool -0.2214 0.0591 -0.1727
Bournemouth 0.8882 -0.0407 0.2126

Bristol 0.6224 0.1741 0.0695
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Cardiff 0.6422 0.3121 -0.0901
Carlisle -0.5888 0.0634 -0.0696
Dover 0.9364 -0.7146 -0.0893
Edinburgh -1.0006 -0.0158 0.0541
Exeter 0.8894 0.3092 0.3292
Fishguard 0.5061 0.5383 -0.4924
Fort William -1.4431 0.3719 0.2468
Gloucester 0.5245 0.0843 0.0032
Great Yarmouth 0.3566 -0.9353 -0.0210
Harwich 0.5698 -0.7701 0.1975
Holyhead 0.1291 0.2137 -0.7365
Inverness -1.6910 0.1129 0.2851
John O Groats -2.2088 0.1106 0.4087
Hull -0.1110 -0.4433 -0.1190
Lands End 1.2693 0.6009 0.6692
Lincoln 0.0800 -0.3966 0.0124
Liverpool -0.0530 0.1262 -0.1838
Newcastle -0.5933 -0.2389 0.0496
Plymouth 1.0069 0.4264 0.4607
Portsmouth 0.9079 -0.2205 0.1607
Sheffield 0.0046 -0.1912 -0.0319
Stranraer -0.9726 0.2432 -0.4059
Swansea 0.6916 0.3303 -0.3322
York -0.2118 -0.2478 0.0095
Latent roots

1 23.36

2 4.15

3 2.49

The Multidimensional Scaling Options menu
has a check box to plot the coordinates (or
scores) in a scatter-plot matrix showing all
the pairs of dimensions. If you want to plot
a single pair of dimensions, you first need
to save the coordinates, using the
Multidimensional Scaling Save Options menu
(Figure 5.4) which is obtained by clicking
on the Save button on the Multidimensional
Scaling menu. Here we have asked to save
the coordinates in a matrix called
Locations, and to display these in a
spreadsheet.

Multidimensienal Scaling - Save Opticns

[t

Save

[¥] Coordinates
[E5tress

[T] Distances

[T Fitted Diistances

[¥] Display in Spreadshest

@

M

Lozations

Save ]| Cahicel

Figure 5.4
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To plot the points, we need to convert the
rectangular matrix spreadsheet of locations
to a vector spreadsheet, by making this the
active window and then selecting Convert in
the Sheet section of the Spread menu on the
menu bar. In the resulting Convert Sheet
menu (Figure 5.5), we change the radio
button from Matrix to Vector, and click on OK
to make the change. The columns will then
be become variates, probably with names
C1, c2 and C3, which can be used in the
graphics menus in the usual way.

25

=

Symmetric Matrix
Diagonal Matrix
) Table

) Scalar

Convert Sheet
Sheet Type M atrix M ame:
() Wechor Locations
@) b atrix

LK

] [ Cancel I I

Help

Figure 5.5

We can then plot the points
using the 2D Scatter Plot wizard
in the usual way. First we use
the initial Data menu (Figure
5.6) to select c1 for the y-
coordinates, and c2 for the x-
coordinates.

Then we select the Lines and
Symbols tab of the Attributes
menu (Figure 5.7), and arrange
to label the points using the text
Name. We also cancel the key
on the Options tab.

Figure 5.8 shows the resulting
plot of the first two dimensions,
and Figure 5.9 shows a similar
plot of the second dimension
against the third dimension
(showing some of the distortion
in the data from a 2-dimensional
solution).

2D Scatter Plot

Data | Options i Lines and Symbols |  Axis erAxis | Frame |

Type of plat: | Single KY -

Avvailable data:

&1 Cl 2
ez |

{BE
(]

¥ wariate: H variate:

Groups:

IS

[ Run H Cancel H Defaults]

Figure 5.6

2D Scatter Plot

| Dt IEDI|R| Lines and Symbals | 3¢ Awis | ' Axis | Frame |

Graph: [ Plot 1 -
Line Styles Symbols
o —— Symbol; @
Line Size: 1
eedom: 4 Colour
eses [ P Coour | I ||
I

Labels: Mame -

[ Fun ]l Cancel ” Dafaults]

Figure 5.7
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IR Gers o Graphics Ve i =) CenS it Craphac
File Edit View Tools Window Help File Edit View Tools Window Help
®EF B & e B R d @ @K R 5 100% =EHd —OHEEDE @ @R Rk % 100%
xLgnds End 064 xLgnds End
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-1.04 xEdinburgBtranraer 04 4  Lincoln
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Double-click on plot to edit it NUM Double-click on plot to edit it NUM
. .
Figure 5.8 Figure 5.9
1 P ical
5. ractica
Genstat spreadsheet file E Spreadshest [Galary.sh] Symmetric Matrx Galawydlit
: b Row 1 2 3 4 5 & T 8
Galaxy.gsh (Figure5.10)contains - =
distances between ten types of Galaxy. 2| 136748 °
Y. . . 3| 1.49666| 0.953839 0
Use multidimensional scaling to [ 2 0070 1enie] 1omem 5
. 5| 2.02237 1.31509| 1.26095| 0.824621 o
represent them ln three 6| 2.31948 1.84662| 1.77482 1.36382| 1.12694 0 F
. . 7| 2.65141 1.96214 1.8 1.5| 1.37477| 1.42127 1]
dlmenslons. 2.45357 2.20227| 2.02731 1.73205| 1.45945| 1.30767| 1.20416 1]
8| 2.62298 2.38747| 2.26274 1.92873| 1.73494| 1.72337| 1.32288| 1.06301 0
10| 2.02978 1.94165| 1.96469 1.98242| 1.80831| 1.94165| 1.87617| 1.67033| 1.81384 0 ;
2] < | T v

Figure 5.10



6  Hierarchical cluster analysis

The hierarchical cluster analysis facilities in Genstat provide ways of grouping » objects
into classes according to their similarity. It starts with a set of n clusters (or groups), each
containing a single object. These initial clusters are successively merged into larger
clusters, according to their similarity, until there is just one cluster (containing all the
objects).

We shall use a set of data concerning mean mandible measurements of various types
of modern and prehistoric dog (Higham, Kijngam & Manly, 1980, An analysis of
prehistoric canid remains from Thailand, Journal of Archaeological Science, 7, 149-165).
This data set is also discussed by Manly (1986, Multivariate Statistical Methods a
Primer, Chapman & Hall, London). The data are in the Genstat spreadsheet Dog. gsh
(Figure 6.1).

[T Spreadsheet [Dog.gsh]* =0 E=R =
Row |T type mandible breadth | mandible height first molar length first molar breadth first to third melar lengrh £irst te fourth premolar length H
bl Modern dod] 9.7 21 19.4 7.7 32 36.5)|~
2|Golden jackal 8.1 16.7 18.3 7 30.3 32.9
ED?:ZD B:E 22:6 21:1 8:3 34:4 43:1
T|Prehistoric dog 10.3 2. 19.1 8.1 32.3 35 s
Figure 6.1
The Hierarchical Cluster Analysis menu is | @ Hierarchical Cluster Analysis = Ec)
obtained by clicking on the Hierarchical | Avalable Data: Similarity Matris [ ]
line in the Cluster Analysis subsection in l T
] ] ! K Form Similarity b atris, .. ]
the Multivariate Analysis section of the : |
Method: Single Link -
Stats menu on the menu bar. If you have
already formed a similarity matrix, you
can enter its name straight into the
Similarity Matrix field in the menu (Figure | Run [ options.. || Gave
62) Lol @ | [ Cancel l I Defaults l
Figure 6.2
Alternatively, you can click  [[Fom simiarity Mot =1° ==
on the Form Similarity Matrix | AvalaieData Data Values Test
L. . first_malar_breadth - -
button and use the Form Similarity | fistmols_iengh first_molar_breadth euclidean
. . prs:_:o_{ﬁyéth_prlemlolar_l first_molar_length euclidean
Matrix menu (Flgure 6‘3)' The #;Ediob_le_lijrgg:lotﬁ[_ eng D first_to_fourth_premolar_l... euclidean
first_to_third_molar_length  euclidean

names of the variates need to be | S

. Default type of Test: mandible_breadth euclidean
entered into the Data Values [Eucidean =] | mandible_height e
window, and you need to define | <= : ] .
a name (here dogmat) for the | e ot ew s e
resulting symmetric matrix. You | unitisbes ] Similrity matris
must also select the way in - [x][@ [ Run || concel | [ Defauts

which the similarities are to be -
calculated from each variate, Figure 6.3
Here we have chosen the default
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type to be “euclidean”, which uses the geometric distance between the points
representing each pair of objects. (A formal definition of this, and the other possibilities
is in the Guide to the Genstat Command Language, Part 2, Section 6.1.2, where it
describes the METHOD option of the FSTMILARITY directive, used by the menu.) You can
change the types of individual data variables by double-clicking on their lines in the right-
hand box. Finally, you can specify a vector (here the text called type from the first
column of the spreadsheet) to label rows and columns of the matrix. When you click Run,
the name of the matrix is automatically entered into the Similarity Matrix field in the
Hierarchical Cluster Analysis menu.

The Method field in the Hierarchical Cluster Analysis menu (Figure 6.2) contains a drop-
down list box to specify the method of clustering to use. These differ according to the
way in which they define the similarity between clusters containing more than one object:

Single Link defines the similarity to be the maximum
similarity between any pair of objects (taken one
from each cluster);

Nearest Neighbour is a synonym for Single Link;

Complete Link defines the similarity between two clusters as the
minimum similarity between any pair of objects;

Furthest Neighbour is a synonym for Complete Link;

Average Link defines the similarity, between a cluster and a new

cluster formed by merging two clusters, as the
average of the similarities with each of the original

clusters;
Group Average is similar to Average Link, except that the average
is over all the objects in the two merging clusters;
Median Sorting if we regard the clusters as points ina

multidimensional space, when two clusters join
the new cluster is represented by the midpoint of
the original cluster points.

Output from the analysis is controlled [~~~ e s, e
by the Hierarchical Cluster Analysis Dipley
Options menu (Figure 6.4). For the dog [ Dendhogram 7] Nearest Msighbours
example, we will simply print, and plot, Amlgamaticns 7] Typical Elements
the dendrogram. This displays the [ Minimum Spanning Tree [T Mean Similarities
points at which the various clusters B his
combine, allowing you to assess the [¥] Plat Ordination and Minimum 5 panning Tree
relationships between the objects. If you [7] Plat Dendrogram
specify a threshold in the Forming (V] Display Unit Labets type -
Groups field of the options menu, V] Display Similarty Asis
Genstat will form a factor grouping all Clustering Thresholds
the objects that have been combined Printing
into a single cluster at that level of Forming Groups
similarity. You can arrange to save the
factor using the Hierarchical Cluster x] I
Analysis Save Options menu, obtained by Figure 6.4

clicking on the Save button in the
Hierarchical Cluster Analysis menu (Figure 6.2).
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Single linkage cluster analysis

Dendrogram
** Levels 100.0 90.0

Modern dog
Prehistoric dog
Cuon

Dingo

Golden jackal
Chinese wolf 4 ..., )

Indian wolf 3 ..., ) I

NDoYyOT B

il Genstat Graphics Viewer - Unnamed 4

The dendrogram for the dogs, [H=r=emuimam
printed above and plotted (with ||==@ - SEFHE B bW oo ta
better resolution) in Figure 6.5,
shows that the modern and
prehistoric dogs are most closely Mo

related, and that both of these are | ——— ji
related to the Cuon and to the Dingo

and Golden jackal. The Indian and cuon
Chinese wolves are related to each

other more than any of the other
dogs, but the similarity is not close.

| Dingo -

Golden jackal -

Chinese wolf ~

Indian wolf —

T T T T T

1.00 0.98 0.96 0.94 0.92
Ready NUM

6.1 Practical Figure 6.5

Genstat spreadsheet file |Bsioin e
Goblet.gsh (Figure 6.6) contains oo = 2 ii ] 2 C
data on 25 goblets from prehistoric g = 2 = 2 x =
sites in Thailand (see page 147 of o = 2 = = = af
Manly, 1986, Multivariate eE — — = . 2
Statistical Methods a Primer, it = = - = - 3
Chapman & Hall, London). Perform | = . ii = =
a principal components analysis to = :

study the relationships between the Figure 6.6

goblets. Then perform a cluster

analysis of the goblets. How does the dendrogram reflect the closeness of the goblets in
the principal-component plot?
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Non-hierarchical cluster analysis aims to find a single grouping of a set of n objects by
optimizing a criterion, for example by maximizing the between-group sum of squares.
Other criteria in Genstat include maximizing the total between-groups Mahalanobis
distance, minimizing the within-class dispersion or a criterion known as maximal
predictive classification, which is designed specifically for binary data. For full
definitions, see the Guide to the Genstat Command Language, Part 2 Section 6.20. This
form of clustering includes the technique known as K-means clustering, where the
criterion is usually the within-class dispersion.

To illustrate the menus we shall use some measurements taken on 30 bronze brooches
(Doran & Hodson, 1975, Mathematics and Computers in Archaeology, Edinburgh
University Press, Table 9.1). These are stored in Genstat spreadsheet Brooch.gsh
(Figure 7.1).

[T Spreadsheet [Brooch.gsh] E”E
Row T Label Foot lengt| Bow height | Coil diameter | Element diameter | Bow width |Bow thickness| Length +
21 94 15 12 11 4.3 4.3 128~
22587 22 18 7 5 8.8 3 59
231830 20 14 6 3 14.3 1.4 44
241549 22 15 7 13 5 4.6 47
251525 1z 22 5 a 6.8 6.4 45
261399 27 15 10 9 8.2 4 a3
27|788 3k 1% 7 3 3.7 5 56
28752 10 10 & 2 2 2.3 26 I’_
29|Hallstat 9 13 4 4 9.6 5 28 3
30le611 68 18 9 3 9.3 5.5 ER ] | oy
E_E 4 I = = = b
Figure 7.1

Before doing the cluster analysis, to counteract skewness in the variables, we transform
each column of measurements x to loglO(x+1). This can be done using the Calculate
menu in the usual way. Alternatively, to
save time, the transformed data are
available in spreadsheet

E=% ol )

” Mon-hierarchical Cluster Analysis

Logbrooch.gsh.

Available D ata:

Data for Clustering:

- Bow_hgight Bow_height 2
To obtain the Non-hierarchical Cluster ng—m‘m‘m Eow_th_igtl;ness
. i o wi
Analysis menu you click on the Non- Coi_diameter = Coi_diameter
. . . . . Element_diameter Element_diameter
hierarchical line in the Cluster Analysis Fool_length Fea Janath
subsection in the Multivariate Analysis Ledl
section of the Stats menu on the menu
bar. =

Figure 7.2 shows the menu set to use
all the measurements to form four
groups using the between-group sum of
squares criterion.

Criterion:

| Bebtween-aroup sum of squares

B

Mumber of Groups:

L]

| Run l |

Options... ]

ﬂ@ | Cancel ”

Defaults ]

Save..

Figure 7.2
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The Non-hierarchical Cluster Analysis Options menu controls the way in which the search
for the best grouping is carried out, and the output that is produced.

In Figure 7.3, we have asked Genstat
to form the initial classification by
finding the four objects that are furthest
apart in the 7-dimensional space defined
by the measurements, using these
objects as the “cores” of the initial
groups, and allocating the other objects
to the group with the nearest core.
(Note: this is feasible only if the number
of groups does not exceed the number
of wvariates.) The Between-group
Interchanges box controls how Genstat
generates new groupings from the initial
classification. Here we are allowing
objects both to be swapped between

Men-hierarchical Cluster Analysis Opticns

=

Display
[¥] Criterion W alue
[¥] Clazsified Data
[¥] Diisplay ¥ alues from Initial Clazsification
Initial Clazsification

") Equal-sized Groups, by Unit Order

@ Automatic, by Distance

Between-group Interchanges
@ Transfer and Swap
71 Swap Only [Fiked Group Sizes)

") Fiw at Initial Clagsification

[¥] Typical Value for Each Class

[¥] Dptiraurn Classification

x][@ [ ok

J | Cancel I [ Defaults

Figure 7.3

groups, and to be transferred from group to group. The setting Swap Only would constrain
the group sizes to remain the same throughout the search (which might be useful, for
example, if you wanted groups of equal sizes, and chosen the Equal-sized Groups option
for the Initial Classification), and the setting Fix at Initial Configuration makes no changes.
Output from the clustering is of the brooches is shown below.

Non-hierarchical clustering
Sums of squares criterion

Initial classification

Number of classes = 4

Class contributions to criterion

1 2
0.5471 0.2434

Criterion value = 2.55101

Classification of units

1 4 3 3 3
1 2 3 3 3
2 3 3 3 4

3 4

1.4189 0.3416

4 3 3 2

3 3 2 3
4 3 1

- W
N -~
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Class mean values

A WN -

AWN -~

Bow_height
1.303
1.217
1.243
1.112

Element_diameter
0.992
0.756
0.959
0.540

Bow_thickness
0.768
0.514
0.728
0.564

Foot_length
1.819
1.402
1.298
1.259

Units rearranged into class order

Group 1

Group 2

Group 3

1.398
1.380
1.255
1.204
1.279

1.973
1.623
1.681
1.978
1.839

1.146
1.204
1.279
1.279
1.176

1.505
1.477
1.342
1.362
1.322

1.204
1.431
1.380
1.230
1.279
1.255
1.146
1.204
1.230

0.653
0.833
0.756
0.724
0.875

2.061
1.857
1.898
211
2.045

0.380
0.690
0.519
0.602
0.380

1.740
1.681
1.699
1.778
1.653

0.623
0.940
0.792
0.708
0.653
0.881
0.568
0.763
0.653

0.653
0.919
0.833
0.724
1.013

1.270
1.104
0.959
0.991
1.185

0.690
0.857
0.940
0.851
0.653
1.009
0.792
0.756
0.785

Bow_width
0.828
1.102
0.818
0.619

Length
1.994
1.710
1.674
1.623

1.230
1.079
1.041
1.114
1.000

0.903
0.845
1.000
0.903
0.845

0.903
1.000
0.903
1.000
1.041
0.845
0.845
0.778
0.903

Coil_diameter
1.093
0.899
0.912
0.874

1.146
1.176
0.954
1.079
0.602

0.778
0.845
0.778
0.778
0.602

0.954
1.114
0.954
0.903
0.778
0.845
1.041
1.114
0.954



1.204
1.146
1.255
1.204
1.362
1.204
1.146

1.531
1.380
1.322
1.041
1.204
1.301
1.380
1.322
1.255
1.322
1.322
1.462
1.362
1.114
1.447
1.000

Group 4

0.9031
1.2041
1.3010
1.0414

1.3424
1.4472
1.2041
1.0414

7 Non-hierarchical cluster analysis

0.681
0.732
0.556
0.748
0.869
0.699
0.778

7
1.785
1.875
1.839
1.663
1.613
1.602
1.623
1.591
1.653
1.708
1.568
1.732
1.681
1.663
1.732
1.462

0.4314
0.6532
0.6532
0.5185

1.5563
1.7482
1.7559
1.4314

Optimum classification

Number of classes = 4

Class contributions to criterion

1
0.5471

Criterion value = 2.50611

2
0.2434

0.813
0.732
0.544
0.778
0.892
0.964
1.025

0.6532
0.6721
0.6721
0.4771

3
0.9901

0.903
0.778
1.041
0.903
1.000
1.041
0.699

0.8451
0.9031
0.9031
0.8451

0.7254

0.845
1.041
0.954
1.146
1.000
1.000
0.699

0.4771
0.6021
0.6021
0.4771

33
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Classification of units

1 4
1 2
2 3

3
3
3

3
3 3
3

Class mean values

A WN -

A WN -

Bow_height
1.303
1.217
1.247
1.146

Element_diameter
0.992
0.756
0.991
0.606

A wh
A OWw

Bow_thickness
0.768
0.514
0.730
0.615

Foot_length
1.819
1.402
1.326
1.207

Units rearranged into class order

Group 1

Group 2

1.398
1.380
1.255
1.204
1.279

1.973
1.623
1.681
1.978
1.839

1.146
1.204
1.279
1.279
1.176

1.505
1.477
1.342
1.362
1.322

0.653
0.833
0.756
0.724
0.875

2.061
1.857
1.898
211
2.045

0.380
0.690
0.519
0.602
0.380

1.740
1.681
1.699
1.778
1.653

0.653
0.919
0.833
0.724
1.013

1.270
1.104
0.959
0.991
1.185

Bow_width
0.828
1.102
0.815
0.692

Length
1.994
1.710
1.694
1.594

1.230
1.079
1.041
1.114
1.000

0.903
0.845
1.000
0.903
0.845

Coil_diameter
1.093
0.899
0.917
0.873

1.146
1.176
0.954
1.079
0.602

0.778
0.845
0.778
0.778
0.602



Group 3

1.204
1.431
1.380
1.230
1.255
1.146
1.204
1.230
1.204
1.146
1.255
1.204
1.362
1.204

1.531
1.380
1.322
1.041
1.301
1.380
1.322
1.255
1.322
1.322
1.462
1.362
1.114
1.447

Group 4

0.9031
1.2041
1.2788
1.3010
1.0414
1.1461

1.3424
1.4472
1.2041
1.2041
1.0414
1.0000

7 Non-hierarchical cluster analysis

0.623
0.940
0.792
0.708
0.881
0.568
0.763
0.653
0.681
0.732
0.556
0.748
0.869
0.699

1.785
1.875
1.839
1.663
1.602
1.623
1.591
1.653
1.708
1.568
1.732
1.681
1.663
1.732

0.4314
0.6532
0.6532
0.6532
0.5185
0.7782

1.5563
1.7482
1.6128
1.7559
1.4314
1.4624

0.690
0.857
0.940
0.851
1.009
0.792
0.756
0.785
0.813
0.732
0.544
0.778
0.892
0.964

0.6532
0.6721
0.6532
0.6721
0.4771
1.0253

0.903
1.000
0.903
1.000
0.845
0.845
0.778
0.903
0.903
0.778
1.041
0.903
1.000
1.041

0.8451
0.9031
1.0414
0.9031
0.8451
0.6990

0.954
1.114
0.954
0.903
0.845
1.041
1.114
0.954
0.845
1.041
0.954
1.146
1.000
1.000

0.4771
0.6021
0.7782
0.6021
0.4771
0.6990
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The output gives details of the initial classification and of the final (optimal)
classification, showing the criterion value, how the objects are allocated to the groups and
the mean values of the measurements in each group. In this example, the initial
classification has been very successful. The optimum classification differs only in that
the eighth object has been transferred from group 3 to group 4, and the 29th object from
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group 4 to group 3.

If you want, you can now save the
final classification by using the Non-
hierarchical Cluster Analysis Save Options
menu (Figure 7.4), which is obtained by
clicking on the Save button in the Non-
hierarchical Cluster Analysis menu (Figure
7.2). Check the Grouping box, type the
name of a factor to store the information

I '
Mon-hierarchical Cluster Analysis Save Option s[_th

Save
[¥] Grouping Im:  Classification

[T Display in 5 preadsheet

|E | Save || Cancel

into the In box, and then click on Save.

7.1 Practical

Genstat spreadsheet file
Goblet.gsh (Figure 7.5) contains
data on 25 goblets from prehistoric
sites in Thailand (see page 147 of
Manly, 1986, Multivariate
Statistical Methods a Primer,
Chapman & Hall, London). Perform
anon-hierarchical classification into
five groups. How does this compare
with the dendrogram produced in
Practical 6.1?

Figure 7.4

[T Spreadsheet [Goblet.gsh] | = el

Row |TLabel

MouthWidth | OverallWidth |OverallBeight| LowerStemWidth | UpperStemWidth | Stembeight ||H

1]

13| 21 23 14

2|2

14] 14 24 19

19| 23 24 20

-

17| 18 16 16

e

19| 20 16 16

12| 20 24 17

12| 19 22 16

-

3|3
4la
5|5
&l6
7|7
gls

12| 22 25 15

EE

11| 15 17 11

10{10

11| 13 14 11

1111

12| 20 25 18

-

12[12

vla|a|la|a|olala|b|afu]

13| 21 23 15

2] -

Jelvlrlolalolo|a|a|p|e]|o

Figure 7.5




8  Multivariate analysis of variance

Multivariate analysis of variance can be viewed as the extension of ordinary analysis of
variance (as in Chapter 6) to handle several response variates at once. So, for example,
instead of making assumptions of Normality for the residuals from a single response
variate, we are now assuming multivariate Normality of residuals from several response
variates.

We illustrate the analysis = e
. . 5 dsheet [T .gsh] = =1 -
using data from an experiment . S— =
| . Row |! Sex |? Temperature | TumourWeight FinalWeight | InitialWeight 1
to 1nvest1gate S€X and 1|Male 4 D.24 16.51 18.15||+
temperature effects on the g|imte 1 B 2.3 158
. 3|Male 4 02 19.84 15.54
growth of tumours in rats (see — F— y e o6 T
page 143 of Chatfield & Collins, 5|Female [ 0.17 15.81 18.35
1986, Introduction to i|Female 4 1o 19.44 20.68||
. . . T|Male 20 0.33 23.3 21.27
MulttvarzateAnalySls, Chapman 8|Male 20 0.45 22.3 19.57
and Hall, London). Three rats of gl Male 20 BEG 1855 20.15
. 10|Female 20 D.25. 22 18.87
each sex were reared in each of | == -
three temperatures (4, 20 and =
Figure 8.1

34). There was no blocking (i.e.
this is a completely randomized
design). The weights of the rats were measured (prior to sub-cutaneous seeding of the
tumours). The response variates, taken at the end of the experiment, are the tumour
weight and the final weight (excluding the tumour). The data are available in spreadsheet
Tumour .gsh (Figure 8.28).

The MANOVA menu (Figure [@wanova = o =
8.2) is obtained by clicking on | vaiable Dt Daa:
the MANOVA line in the |iErEim i
Multivariate Analysis section of _
the Stats menu on the menu bar. :

In Figure 8.2, we have .
specified a treatment structure : LG BB e+ Temperckure |
of Sex*Temperature, to fit | g Dlock St | |
the main effects of sex and |’ - [Covaistes [riiatvieigbt |
temperature, and their E ™ Factorial limits on madel terms:
interaction (see Section 6.6). v [x][@] [ Fun [ Cancel | [ Dptiors.. || Defauts |
There is no block structure but

we want to treat the variate Figure 8.2

InitialWeight asacovariate

(so we check the Covariates box, and enter its name into the adjacent field). Covariates
are included in the treatment model like variates in a linear regression. So, Genstat
estimates a regression coefficient for them, and adjusts the other estimates and sums of
squares to take account of their presence in the model (see Guide to the Genstat
Command Language, Part 2 Section 4.3).
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The MANOVA Options menu, shown in | manova options =5
Figure 8.30, allows you to control the Display Output from MANGVA
output from the multivariate analysis, and ¥ Tests
also to display output from the univariate et i
anova’s of the individual response variates. Dispiay Output from Univariate Analyses
Here we have asked just to print the various Sl e
tests from the multivariate analysis, and [ Effects [F] Missing values
omitted the sums and squares and products b
of the treatment effects and residuals (which IFYpendomy e it ek

are involved in calculating the tests).

The output, shown below, indicates that
there are sex and temperature effects, but no
interaction and no effect of the covariate.

|z| | l Ok ] [ Cancel

Figure 8.3

Multivariate analysis of covariance

Y-variates: FinalWt, TumourWt.
Covariate: InitWt.

Test statistics

Term d.f. Wilks' lambda RaoF n.d.f. d.d.f. F prob.
Sex 1 0.3485 9.35 2 10 0.005
Temperature 2 0.3269 3.75 4 20 0.020
Sex.Temperature 2 0.7830 0.65 4 20 0.633
Covariate 1 0.8219 1.08 2 10 0.375
Term d.f. Pillai-Bartlett Roy's maximum Lawley-Hotelling
trace root test trace
Sex 1 0.6515 0.6515 1.8697
Temperature 2 0.8477 0.4949 1.5249
Sex.Temperature 2 0.2278 0.1605 0.2634
Covariate 1 0.1781 0.1781 0.2167

The analysis uses the MANOVA procedure (see Guide to the Genstat Command Language,
Part 2 Section 6.6.1). This uses the ANOVA directive, which requires the design to be
balanced (see Section 6.7 or Guide to the Genstat Command Language, Part 2 Section
4.7). For unbalanced data, you can use the RMULTIVARIATE procedure, but this is not
currently accessible through the menus.



8.1 Practical

Genstat spreadsheet file
Skull.gsh (Figure 8.4)
contains data on 150 male
Egyptian skulls from five
different epochs (see Practical
3.1 and pages 4 and 5 of Manly,
1986, Multivariate Statistical
Methods a Primer, Chapman &
Hall, London). Perform a
multivariate analysis of

8.1 Practical

39

[ Spreadsheet [Skull.gsh] E=nEen =

Row ! Epoch Height |Basiclveslarlength| NasalBeight :]
il [Early predynastid] 131 138 89 asf|~
2|Early predynastic 125 131 92 18 |[=
3|Early predynastic 131 132 99 50
4|Early predynastic 119 132 96 a4
5|Early predymastic 136 143 100 54
6|Early predynastic 136 137 89 56
7|Early predynastic 139 130 108 48
8|Early predynastic 125 1386 93 18
8|Early predymastic 131 134 102 51
10[Early predynastic 134 134 99 51
11[rar1y preaynastic 129 138 95 50
13[Early predynastic 134 121 95 53
13[Farly predynastic 126 129 108 51
14[rarly predynastic 132 136 100 50
15[Early preaynastic 141 140 100 51
16[Early predynastic 131 134 97 54|

2w

<

variance. Are there any epoch Figure 8.4

differences?



9 Classification trees

A classification tree is a device for predicting (or identifying) the class to which an
unidentified object belongs. The starting point is a sample of objects from the various
classes. Measurement recorded on the sample may be either continuous (supplied in
variates) or discrete (supplied in factors). Below we shall illustrate the methods using the
iris data from Chapter 3, where the data were all continuous (see Figure 3.1).

The Classification Tree menu (Figure 9.1) is in the Trees sub-option of the Multivariate
Analysis option of the Stats menu on the menu bar.

In Figure 9.1, we have specified —
) g ’ p NCfassiﬁcationTree || {=]
Species as the name of the factor |, .iwpas Goss o ]
- -

defining the groups to be predicted, and | petal Lenatr

entered the names of all the EtalT\fidthh | e Lo Lo i
measurements into the X-variates box. | Speses B
The Save Tree in box allows you to N

specify a name for the tree structure that
Genstat will generate to represent the i

classification tree. If you do not do this,

Genstat will use its own private name,
but you will not find it easy to use the G| E3 ] e

| Run | | Options. .. l Further Dutput,

tree outside the menus. Here we have

) , Figure 9.1
specified the name TrisTree. g
The tree progresswely SplltS th? Classification Tree Opticns lﬂh
objects into subsets based on their Dispiar
values for the measurements. [F] Bracketed L abelked Biagram
Construction starts at a node known as [ Details [ Mumbered Diagram
the root, which contains all of the (Tl Graph (] Suminary
[¥] Indented [ Monitoring

objects. A factor or variate is chosen to
use there that “best” Splits the Mumber Individuals ta stop splitting. 5§
individuals into two subsets. For || [/ ariblefactorlevels erdered

. .. tethod Anti-end-cut fackar
example, in the tree for the irises, the S ,
L. . . @ Gini information @ Mone
ﬁrSt lelSlOIl 18 done by seemg Whether *) Mean posterion improverment ) Class number

the petal lengths are less than or greater ) Reciprocal entrapy
then 2.450 (see the output below). The =

tree is then e(xtended totfontain tw)o new ] gt ) [cComsle] (o
nodes, one for each of the subsets, and Figure 9.2

factors or variates are selected for use at

each of these nodes to subdivide the subsets further. The process stops when either no
factor or variate provides any additional information, or the subset contains individuals
all from the same group, or the subset contains fewer individuals than a limit specified
by the Number of items to stop splitting field of the Classification Tree Options menu (Figure
9.2). The nodes where the construction ends are known as terminal nodes.

Factors may have either ordered or unordered levels, according to whether or not the
X-Variable factor levels ordered box is checked. For example, a factor called Temperature
with levels 5, 10 and 20 would usually be treated as having ordered levels, whereas levels
labelled 'London', 'Moscow', 'New York', 'Ottawa' and 'Paris' of a factor
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called Town would be regarded as unordered. For unordered factors, all possible ways of
dividing the levels into two sets are tried. With variates or ordered factors with more than
2 levels, a suitable value p is found to partition the individuals into those with values less
than or greater than p. The radio buttons in the Method and Anti-end-cut-factor boxes in the
Classification Tree Options menu allow you to choose how to assess the potential splits:
whether to use Gini information or mean posterior improvement, and whether to use
adaptive anti-end-cut factors. Details are given in the Guide to the Genstat Command
Language, Part 2 Section 6.21.1.

The Display box of the Classification Tree Options menu (Figure 9.2) is set to print the
tree only in “indented” format. This is a representation analogous to those used to display
botanical trees. In the iris output, printed below, the first variable to examine is
pPetal Length. If this is less than 2.450, the iris specimen is identified as Setosa.
Otherwise you progress to index 2, and examine Petal Width. So, a specimen of
Versicolor might be identified by the sequence: (1) Petal Length > 2.450; (2)
Petal Width < 1.750; (3) Petal Length > 4.950; (5) Petal wWidth > 1.550
Versicolor. Notice that the same variable can be used several times as the observed
characteristics are refined on the way to an identification.

1 Petal_Length<2.450 Setosa

1 Petal_Length>2.450 2

2 Petal_Width<1.750 3

3 Petal_Length<4.950 4

4 Petal_Width<1.650 Versicolor
4 Petal_Width>1.650 Virginica
3 Petal_Length>4.950 5

5 Petal_Width<1.550 Virginica
5 Petal_Width>1.550 Versicolor
2 Petal_Width>1.750 6

6 Petal_Length<4.850 Virginica
6 Petal_Length>4.850 Virginica

Generally the construction of a classification tree will result in over-fitting. That is, it will
form a tree that keeps selecting factors or variates to subdivide the individuals beyond the
point that can be justified statistically. The solution is to prune the tree to remove the
uninformative sub-branches. The pruning uses accuracy figures, which are stored for
each node of the tree. The tree also stores a prediction for each node, which corresponds
to the group with most individuals at the node. For each node of a classification tree, the
accuracy is the number of misclassified

individuals at the node, divided by the [ rree pruning |
total number of individuals in the data | [avaisbie pats Tres: Fiim
set. It thus measures the “impurity” of * Painter to Pruned Trees:
the subset at that node (how far it is Display -
from it from being homogeneous i.e. _i a':r:t"min =
having individuals all from a single = ’
group). - Feplace with pruned. ..
You can prune the tree using the Tree 2| (x][@) [_Run ][ Cancel || Defouts

Pruning menu (Figure 9.3), which is oo 3



42 9 Classification trees

accessible from Tree subsection in the Multivariate Analysis section of the menu bar or by
clicking on the Prune button on the Classification Tree menu. As we have loaded the menu
from the Classification Tree menu, Genstat has filled in the name of the tree automatically.

In the Display box, we have asked for :
the relationship between the impurity
and the number of terminal nodes to be
presented in a graph (Figure 9.4) and a
table (below).

The table and graph show that the
impurity of the pruned trees drops
rapidly as the number of terminal nodes
increases from one up to three, but then
tails off more slowly. This suggests that
we should prune down to three terminal
nodes, but no further. This tree is the
fifth in the sequence of pruned trees
(count from the right of the graph, or
notice the numbering in first column of
the table).

i GenStat Graphics Viewer
File Edit View Tools

FHa®= S @K X r 100%

06

054

0.4

0.3 4

024

0.1 4

0.04

1 2 3 4 5 6 7
number of terminal nodes
M

Double-click on plot to edit it - NUM

Figure 9.4

Characteristics of the pruned trees

Tree RT Number of
no. terminal
nodes
1 0.0133 7
2 0.0133 6
3 0.0200 5
4 0.0267 4
5 0.0400 3
6 0.3333 2
7 0.6667 1
By clicking the button Replace with pruned we can [ gepiace with pruned e |
replace contents of the tree Tri s Tree with this smaller
tree. We simply need to fill in the number of the tree (5) Number of ree: 5

in the resulting menu (Figure 9.5), click on OK, and
then cancel the Tree Pruning menu.

[ Ok ] [ Cancel

Figure 9.5
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The pruned tree can be displayed using
the Classification Tree Further Output menu
(Figure 9.6), obtained by clicking on the
Further Output button on the Classification
Tree menu.

43

Classification Tree Further Cutput I&J
Dizplay
[] Bracketed [ Labelled Diagram
[¥] Detailz [¥] Numbered Diagram
[] Graph [¥] Summary
[Z] Indented
@| |£| l Fun ] | Cancel
Figure 9.6

Summary of classification tree: IrisTree

Number of nodes: 5
Number of terminal nodes: 3
Misclassification rate: 0.040

Variables in the tree: Petal_Length, Petal_Width.

Details of classification tree: IrisTree

1 Current prediction: 1.000
Number of observations: 150
Species Setosad/ersicolor Virginica
Proportions  0.333  0.333  0.333
Test: Petal_Length<2.450
Next nodes:23

2 Current prediction: 1.000
Number of observations: 50
Species Setosa/ersicolor Virginica
Proportions  1.000 0.000  0.000
Conclusion: Setosa

3 Current prediction: 2.000
Number of observations: 100
Species Setosad/ersicolor Virginica
Proportions  0.000 0.500 0.500
Test: Petal_Width<1.750
Next nodes:45

4 Current prediction: 2.000
Number of observations: 54
Species Setosa/ersicolor Virginica
Proportions  0.000 0.907 0.093
Conclusion: Versicolor

5 Current prediction: 3.000
Number of observations: 46
Species Setosa/ersicolor Virginica
Proportions  0.000 0.022 0.978
Conclusion: Virginica
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1 Petal_Length<2.450 Setosa

1 Petal_Length>2.450 2

2 Petal_Width<1.750 Versicolor
2 Petal_Width>1.750 Virginica

Tree diagram

The initial summary, generated by the Summary check box, lists the number of nodes (5)
and terminal nodes (3) in the tree, its misclassification rate and which variables it uses.
The details section (from the Details check box) gives information about each node,
referring to the numbering displayed in the tree diagram at the end of the output (which
is generated by the Numbered Diagram check box).

Note, if possible, it is best to use “accuracy” figures that are derived from a different
set or sets of data from that which was used to construct the tree. This cannot be done
through the menus, but you can use the BCVALUES procedure, which is described in the
Guide to the Genstat Command Language, Part 2 Section 6.21.3.

Another useful procedure, which also cannot be accessed currently through the menus
is BCIDENTIFY. This has a convenient interactive interface, that asks you to enter the
information required by the tree as and when it is needed. (For details of the options and
parameters that allow you to use it in batch mode, see the Guide to the Genstat Command
Language, Part 2 Section 6.21.3). To run the procedure in this way, you merely need to
set the TREE option to the name of the tree, here I1risTree. If we type the command

BCIDENTIFY [TREE=IrisTree]

and execute it, for example by | question )
clicking on the Submit Line line
in the Run menu on the menu
bar’ Genstat asks the question in Do you want b print a transcript of the identification?
Figure 9.7. (Our answer is yes.) e D

| Evit |

The next question is in Figure | question |
9.8, to which we shall answer
that the petal length is greater
than 2.450. (Check the box and Please select the appropriate characteristic:

click on OK) " Petal_Lengths2.450 eyt
% Petal Length:2.450

(] | Exit

Figure 9.8



This generates the question in
Figure 9.9, to which we shall
answer that the petal width is
less than 1.750.

We have now reached the
terminal node, and Genstat asks
if we want to print the
identification (Figure 9.10). It
would be best to take the default
suggestion, of yes, here as we
have not set the option of
BCIDENTIFY that would save
the information!

The output shows first a

9.1 Practical

45

Question lﬁ]
Flease select the appropriate characteristic:
% Petal "width<1.750 " emit
" Petal_twidth=1.750
oK | Exit
Figure 9.9
Question [ﬁl
Do pou want to print the identification?
 nao * pes
Ok, | Exit
Figure 9.10

transcript of the questions and answers (as requested in Figure 9.7), and then the

1dentification of Versicolor.

Identification using a classification tree

Observations:
Petal_Length>2.450
Petal_Width<1.750

Identification:
Versicolor
9.1 Practical
Genstat spreadsheet file [Smamsn ELD@EI
. Row Epoch Max: Bas: cHeight |BasiclveolarL h| NasalHeight
Skull.gsh (Figure 9.11) B riy preamaseid 2] saf
2|Early predynastic 125 131 92 as| =
Contalns data on 150 male 3|Early predynastic 131 132 99 50
. 4|Early predynastic 119 132 96 44
Egyptlan Skulls from ﬁVe 5|Barly predynastic 136 143 100 54
é|Early predynastic 138 137 89 56
different epochs (see Practical ety st = 0 o o
3.1 and pages 4 and 5 of Manly, g — = - =
1986, Multivariate Statistical || ey e = = = =
Methods a Primer, Chapman & 13|Bar1y pradynast?c 126 129 108 51
14|Early predynastic 132 136 100 50
15|Early predynastic 141 140 100 51
Hall’ LOndOH). 16|Barly predynastic 131 134 97 54
iE 4 M » :

Figure 9.11
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Form a classification tree. Prune down to 20 terminal nodes. What is the
misclassification probability?



10 Regression trees

Regression trees are very similar to classification trees, except that the attribute to predict
is the value of a response variate rather than the level of a group factor. So the starting
point is now a sample of observations with various values of the response. As in a
classification tree, the measurements recorded on the sample may be either continuous
(supplied in variates) or discrete (supplied in factors). Below we shall illustrate the
methods using the pollution data from Chapters 1 and 2, where the data were all
continuous (see Figure 1.1).
The Regression Tree menu (Figure - —

10.1) is a sub-option of the Regression :\'L::jg:;ﬂ = T =
Analysis option of the Stats menu on the | pas

. Manf KM aniables: |

menu bar. In Figure 10.1, we have | rop Marf
. . Precip Pop
specified sO2 as the response variate, | so2 [
Tem 2 T
and entered the names of all the | i — i
measurements into the X-variates box.
The Save Tree in box allows you to .
specify a name for the #ree structure that
| Run | | Options. .. l Further Dutput, .

Genstat will generate to represent the
classification tree. If you do not do this, )X @] [uomesl] fane.
Genstat will use its own private name,
but you will not find it easy to use the
tree outside the menus. Here we have specified the name RegTree.

Figure 10.1

The tree progressively splits the e T =%
observations into subsets based on their Deniar
values for the measurements. [] Bracketed [] Labelled Driagrarn
Construction starts at a node known as [ Details [ Humbered Diagram
the root, which contains all of the ("] Giraph [} Summary

[¥] Indented [ Moritaring

observations. A factor or variate is
chosen to use there that “best” splits the | | Mean square value ta stop spliting: g
observations into two subsets. The aim [E0Variable factor levels ordered
is to form subsets that have similar X][@)] [ ok | [ Concdl | [ Defaus
values for the response variate. The
predicted value of the response variable
at each node of the tree is the mean of its value for the subset of observations at that node.
The accuracy of the node is the squared distance of the values of the response variate
from their mean for the observations at the node, divided by the total number of
observations. The potential splits at the node are assessed by their effect on the accuracy,
that is the difference between the accuracy of the node and the sum of the accuracies of
the two potential successor nodes. The node will become a terminal node if none of the
splits provides any improvement in accuracy, or if the mean square of the observations
at the node is less than a limit that can be specified in the Regression Tree Options menu
(Figure 10.2). As in a classification tree, factors may have either ordered or unordered
levels, according to whether or not the X-Variable factor levels ordered box is checked (see
Chapter 9 for more details).

The menu also allows you to select the output to display. Here we have asked for the

Figure 10.2
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tree in “indented” format (as we did earlier for the classification tree in Chapter 9). So,
in the output below, the first variable to examine is Manu£. If this is less than 748.0, you
progress to index 2, and examine Pop. Otherwise, you find the other line for index 1,
further down the tree, which tells you to go to index 33 and form another split involving
Manuf. The terminal nodes (at which predictions of SO2 are made) are identified by the
fact that they are followed by real numbers (with decimal points) rather than integers. So,
for example, at index 5, sO2 is predicted to be 13.

1 Manuf<748.0 2

2 Pop<190.0 3

3 Wind<9.800 4

4 Temp<-50.055

5 Temp<-58.10 13.
5 Temp>-58.10 6

6 Wind<8.850 7

7 Days<118.5 28.

7 Days>118.5 31.

6 Wind>8.850 36.
4 Temp>-50.05 8

8 Days<131.0 56.

8 Days>131.0 46.

3 Wind>9.800 94.

2 Pop>190.0 9

9 Days<108.0 10
10 Temp<-55.55 11
11 Wind<10.85 12
12 Temp<-59.20 10.
12 Temp>-59.20 13
13 Days<62.50 11.
13 Days>62.50 12.
11 Wind>10.85 14
14 Days<80.00 9.
14 Days>80.00 8.
10 Temp>-55.55 15
15 Days<101.0 16
16 Days<92.00 17.
16 Days>92.00 14.
15 Days>101.0 17.
9 Days>108.0 17
17 Temp<-59.35 18
18 Manuf<241.0 19
19 Manuf<170.0 14.
19 Manuf>170.0 20
20 Days<120.5 9.
20 Days>120.5 10.
18 Manuf>241.0 21
21 Days<117.0 24.
21 Days>117.0 18.
17 Temp>-59.35 22
22 Wind<11.20 23
23 Days<142.0 24
24 Pop<831.0 25
25 Wind<7.950 26
26 Days<123.5 26.
26 Days>123.5 23.



25 Wind>7.950 27
27 Precip<41.00 28

28 Manuf<313.5 26.

28 Manuf>313.5 29

29 Manuf<397.5 28.
29 Manuf>397.5 29.

27 Precip>41.00 30
30 Days<119.5 31.
30 Days>119.5 30.
24 Pop>831.0 47.
23 Days>142.0 31
31 Days<155.5 61.
31 Days>155.5 29.
22 Wind>11.20 32
32 Days<144.5 16.
32 Days>144.5 11.
1 Manuf>748.0 33
33 Manuf<2518 34

34 Precip<32.98 35.
34 Precip>32.98 35

35 Days<110.0 56.
35 Days>110.0 36
36 Days<135.0 69.
36 Days>135.0 65.

33 Manuf>2518 110.

10 Regression trees
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As with classification trees (Chapter 9), the construction of a regression tree will
generally result in over-fitting. That is, it will form a tree that keeps selecting factors or
variates to subdivide the individuals beyond the point that can be justified statistically.
The solution is again to prune the tree to remove the uninformative sub-branches. The
pruning uses accuracy of the nodes of the tree, as defined above.

You can prune the tree using the Tree | tree Pruning
Pruning menu (Figure 10.3), which can || avaisble Dats

be opened from Tree subsection in the
Multivariate Analysis section of the menu
bar or by clicking on the Prune button

on the Regression Tree menu. As we -

have loaded the menu from the

Regression Tree menu, Genstat has filled o) [x]
in the name of the tree automatically. g, gure 10.3

Tree: RegTree
“ Pointer to Pruned Trees:
Dizplay
[¥] Graph [¥] Table
[ Moritaring
Feplace with pruned...
| Fun J I Cancel J l Defauls
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[l GenStat Graphics Viewer - Unnamed 1

In the Display box, we have asked for —[fis ez
the relationship between the accuracy [=H@2--sacogoanWiny o o
and the number of terminal nodes to be
presented in a graph (Figure 10.4) and a
table (below). The table and graph show
that the impurity of the pruned trees
drops rapidly as the number of terminal

500

400 4

nodes increases from one up to about

ten, but then tails off more slowly. This || &

suggests that we should prune down to o
ten terminal nodes, but no further. This

tree is the 26th in the sequence of 1004 “

pruned trees.

number of terminal nodes
M

Double-click on plot to edit it - NUM

Figure 10.4

Characteristics of the pruned trees

Tree RT Number of
no. terminal
nodes

1 0.00 37
2 0.01 36
3 0.02 35
4 0.04 34
5 0.05 33
6 0.07 32
7 0.13 31
8 0.24 30
9 0.46 28
10 0.57 27
1 0.70 26
12 0.85 25
13 1.05 24
14 1.25 23
15 1.56 22
16 1.89 21
17 2.33 20
18 3.01 19
19 3.70 18
20 4.92 17
21 6.80 16
22 8.76 15
23 11.69 14
24 18.07 13
25 26.10 12
26 47.70 10
27 62.39 9

N
oo

77.50 8
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29 96.23 7
30 115.24 6
31 146.10 5
32 202.47 4
33 347.87 2
34 537.51 1

You can get the number of the tree from ~ [Be=tesin e
the index in the first column of the [|=®@®- -&sscvs sam@uyr o
table, or by counting from the right of
the graph, or by using the Data-info tool
on the graph, as shown in Figure 10.5.
To select the tool, you click on the icon

with the arrow and question mark at the

500

400 4

left-hand end of the Graphics Toolbar. o]
The viewer will then display details ofa || &
point when you rest the pointer nearby. m| . I

100 4 »

L,
o [Unit: 26, 'RTpruned v Nterminal’, x = 10, y = 47.7 | e
0 5w o1 o0m  om w5
number of ?ermirqal nodes

Figure 10.5
By clicking the button Replace with pruned we can [ gepisce with pruned | |
replace contents of the tree RegTree with this smaller
tree. We simply need to fill in the number of the tree Number of tree: 26
(26) in the resulting menu (Figure 10.6), click on OK,
and then cancel the Tree Pruning menu. [ox ] [ concel

Figure 10.6

The pruned tree can be dlsplayed LlSiIlg Regression Tree Further Cutput lﬁl‘
the Regression Tree Further Output menu D
(Figure 10.7), obtained by clicking on the [ Bracketed [] Labelled Diagran
Further Output button on the Regression Tree [ Details ("I Numbered Diagram
menu. Here we have asked to print the tree [¥] Graph V1 Summary
in indented form again, to print a summary | ik
of its properties and to display it in a graph [ R | [ Cancel
(see Figure 10.8).

Figure 10.7
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Summary of regression tree: RegTree

Number of nodes: 19

Number of terminal nodes: 10

Residual sum of squares: 1956

Residual degrees of freedom: 31

Residual mean square: 63.09

Percentage variance accounted for: 88.55

Variables in the tree: Manuf, Pop, Wind, Days, Precip, Temp.

1 Manuf<748.0 2

2 Pop<190.0 3

3 Wind<9.800 4

4 Temp<-50.05 27.
4 Temp>-50.05 51.
3 Wind>9.800 94.

2 Pop>190.0 5

5 Days<108.0 12.

5 Days>108.0 6

6 Temp<-59.35 15.
6 Temp>-59.357

7 Wind<11.20 32.64
7 Wind>11.20 13.50
1 Manuf>748.0 8

8 Manuf<2518 9

9 Precip<32.98 35.
9 Precip>32.98 63.33
8 Manuf>2518 110.

The initial summary, generated by the Summary check box, lists the number of nodes (19)
and terminal nodes (10) in the tree, its residual sum of squares, degrees of freedom and
mean square, and the variables that it uses. Note, if possible, it is best to use “accuracy”
figures that are derived from a different set or sets of data from that which was used to
construct the tree. This cannot be done through the menus, but you can use the BCVALUES
procedure, which is described in the Guide to the Genstat Command Language, Part 2

Section 6.21.3.
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File Edit View Tools Window Help

St

FHFBR SR EBRTF A&V BNXY | g 100% |‘
g
N 2518
Freco<a ™ B0
I,I ) E
4 T 3 i
| Double-click on plot to edit it NUM

Figure 10.8
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10.1 Practical

Genstat spreadsheet file Water.gsh | [ spresdeheet (Watergsh] i
i . i Row | Employ Opdays Product Temp Water
Figure 10.9) contains data about the +
water usage of a production plant (last e 129 21 7.107| 58.8) 3.067Qi

2 141 22 6.373 65.2 2_.828

column of the sheet). There are also

. . 3 153 22 6.7596 T0.9 2.891

four variates that may be associated 7 e o ol ia

with the amount of water that has been 5 193 25| 14.792| 79.3| 3.082

used: the average temperature, the 3 19 o O o B

amount of production, the number of $ i i e | S

. 8 186 23 13.526 63.59 3.06
operating days and the number of : = T |

employees. (See page 352 of Applied 10 187 20 14.119 39.5| 3.286

Regression Analysis by Draper & e £ 23 Gnaew] Eas) Gno

Smith, 1981, Wiley, New York.) = == |, SRR B, e

. . ais 158 22 13.619 56 3.022

Form a regression tree to predlct T 155 T T

water usage from the other variates. 15 191 21|  14.556 73| 3.95

16 200 21 18.573 78.9 4_488

1 bl 200 22 15.618 T9.4 3.295

7|V« i 3

Figure 10.9
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Generalized Procrustes | D eotsn oo e
. Row |! Assessor [T accribute | Samplei | Samplez | Sampiles | samples | Sampies | samples | sampie? | Sampies

analysis allows you to 1‘: by

produce a consensus

configuration of points from

several input configurations.

2(a Tawny

Depth
Tint

Red

wlulolofalw

Brown

Soft

wlo|a|e|n]e|w

REIEIEREEEEEEEEREDREREREEEE

Intensity

Red

Figure 11.1 shows an =
example data set from an =
evaluation of the appearance
of port-wines by Williams &
Langron (1984, Journal of
the Science of Food and Agriculture, 35, 558-568), stored in spreadsheet file Port . gsh.
There were six assessors (labelled A-F in column 1), eight samples of port (columns
Samplel - Sample8), and the attributes measured by each assessor are described in the
Attribute column. Notice that this is an example of free choice profiling; the assessors
were not required to observe the same attributes, but they could each define their own.
The only constraint is that each assessor must be consistent in their definition of an
attribute over the samples. Also, for the analysis to work, each assessor must observe the
same number of attributes. However, it is valid to include a “null” attribute of zero
observations for assessors that have observed too few (assessors D, E and F here).

The analysis treats the observations from each assessor as a configuration of » points
(one for each sample) in p dimensions (one for each attribute), and forms a centroid
configuration that gives a consensus view of how the assessors perceive the ports. The
basic data for the analysis is a set of attribute x sample matrices, containing the
measurements made by each assessor.

Brown

olalrlv|lo|lu|w|lw|lojlw|a|r|e|la|lo|m|e|u|v|u|lo|e|ae]|k

oluw|luv|vlo|lo|e|lw|lo|lu|o|e|a|w|e|v|le|u|o|a|r|u|a]a

ola|lr|vlo|lu|le|le|lofju|o|w|a|la|lo|v|u|la|la|a|lr|a|s]|a

olvalr|lo|o|le|lele|lofu|uv|v]|a|lu|lr|lo|le|a|v|lu|fo|je|a]|s

o|lalo|u|o|u|v|w|lo|e|uv|w]|a|luv|o|v|k|a|e|a|lo|e|o]|w

olalr|lofojulslwlolea|lo|v|laleloje|u/alo|la|o]w|o]s
1

It is often used in sensory o :
analysis, for example of || — .
: 12 Intensit: 3

food or wine, where the = E— = =
input configurations will be - T :
assessments made of various i _— :
attributes of the food or z 1 2
wine samples. % - -
3
F
7
o

“llo|lo|w|o|lo|lw|la|s|o|lv|w|w|lale|lv]|a|lon|lolr|[alw]|e|n]|e

Figure 11.1

These can be formed by File Edit View Run Data |Spread | Graphics Stats Toels Windew Help
first deleting the CCLEIRET B I R
. @ =y = HE coumn yElmE=s= BFEEEE
Attributecolumn(putthe |— ru= ,
. . [T Spreadsheet [Port.gsh] Caleulste i
cursor into any cell in the T r — [——— = T =
Column, then Select the 1A [Ruby] Insert 3 Selected Rows Alt+F7
. 2|A Tawny | Select 3 Empty Rows
Current Column SUb-OptIOI'l of 3a Depth Restrict/Filter v Current Colurnn Shit+F7
the Delete option of the [[i—f= 5= =~ e et e
. mpty Columns rl+Shift+
Spread menu, as shown in B prom] st 2 I i
o Book v

Figure 11.2. Figure 11.2
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Then open the Split/'Subset Sheet menu (Figure Split/Subsct Sheet: Spreadsheet Portgeh] | S
11.3), by selecting the Split/Subset sub-option of the Operation

. . . @ Split int ltiple sheet: ~) Subset b ingle heet
Manipulate option of the Spread menu. Figure 11.3 =
. . . . Split sheet using: =
is set to split the spreadsheet into multiple sheets (Eopior s J

Factor. [Assessor VI

using all levels of the Assessor factor.

Factor Graups to Keep:
<&l Lewvels> -

moOo o m =

[¥] Use factar labels in column names
Add to Book
[New Book Yl

[ Ok ] I Cancel ] l Help ]

Figure 11.3

[ Spreadsheet [Book2]* [ = |3
Row hBSES-‘!Ol’ A III.111:.T:.]::i.b\:n:.e_.ik Samplel B|Sample2 2|Sample3 &fSampled A|SampleS A|Sampleé 2| Sample7 2| Sampled 2 1
lE Ruby 7 f & 4 4 3 2 af|
ZlA Tawny o 7 2 8 & 8 7 1 |
3|A Depth 5 6 8 4 4 4 o] 3 ¥
41 Tint 1 1 2 a o i} o i} =
HiEE 1l ] »

Figure 11.4

The ﬁr'st qf the six new spreadsheets is [ T . |
shown in Figure 11.4. We need to delete the

b atrist M ame:

assessor column. We then convert the Shff;;i > =
spreadsheet into a matrix by selecting the @ Matiin

Convert sub-option of the Manipulate option R e

of the Spread menu to open the Convert Diagonal Matis
Sheet menu. In that menu (Figure 11.5), we ) Table

select Matrix as the Sheet Type, give it a ) Sealar

name (here M1), and click on OK. We now
need to transpose the spreadsheet, by
selecting the Transpose sub-option of the
Manipulate option of the Spread menu, and
we can rename the transposed matrix (e.g. | ok | | cancel | | Heb
to x1) by using the Sheet Properties menu
(opened by selecting the Properties sub- Figure 11.5

option of the Sheet option of the Spread

menu. We then need to repeat the process for the other new spreadsheets, giving each
transposed matrix a different name (X2 - X6).




11 Generalized Procrustes analysis

However, as spreadsheet manipulation is
not the main point of this Chapter, the
transposed matrices can be found in
spreadsheet book Portmatrices.gwb, as
shown in Figure 11.6. (The original data
were presented in Figure 11.1 in order to

display their structure more clearly.)

The Generalized Procrustes menu
(Figure 11.7) is opened by selecting the
Generalized Procrustes sub-option of the
Multivariate Analysis option of the Stats
menu. The main task is to set the Data to
be Analysed to the matrices containing
the configurations (here x1 - x6).

The common centroid configuration
is formed by the operations of
translation to a common origin, rotation
and reflection of axes, and possibly also
scale changes. It is found iteratively,
using either Gower's or Tenberge's
method, by minimizing the sum of the
squared distances between the centroid

57

T Spreadsheet [Portmatrices.gwb]... ’EHE'
Hammalelc|plE|F]
Row | 1 2 3 4 +
1 0 5 it e
2 ] 7 ] 1
3 8 2 ] 2
4 4 & 4 1]
5 4 6 4 0 =
[ 3 il 4 1]
7 2 T 1] 0
2 4 5 3 0
AIEE 1
Figure 11.6
N Generalized Procrustes E =}
Available Data: Data to be Analyzed:
A1 51
e w0
®3 w3

x4 w4
#3 ‘ > %5
fat ! =

Methad

@ Gower ' TenBerge

[ Run H Options... l

] |£] | Cancel || Defaults |

Save...

Figure 11.7

and each individual configuration. To give a unique representation, the final centroid is

defined using its principal axes.
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The Generalized Procrustes Options
menu (Figure 11.8) allows you to select
the type of scaling to be done. Isotropic
scaling, which scales the all the
dimensions of each configuration by an
equal amount, takes place during the
Procrustes analysis. The alternative is to
scale each configuration prior to the
analysis so that the trace of each matrix
is one. If this separate scaling is used,
the subsequent residuals represent pure
lack-of-fit and the scaling factors given
in the results represent differences in
relative size/spread of the original
(centred) configurations, whereas for
overall isotropic scaling the scaling
factor contains components of both size
and lack-of-fit.

The Display boxes control the output:

s -
Generalized Procrustes Options Lii-,l
Dizplay
[ V] &nalysis [¥] Individual configurations
[¥] Centroid [ Monitaring
[¥] Calumn means
Mumber of dimensions;
Scaling
"1 None @) |zobopic ) Separate
Tolerance for convergence: 00000
b awirnum number of iterations: 50
Graphics
[¥] Comzensus [ Individuals [¥] Projections
Mumber of dimensions for plat:
|X| || [ Ok ] | Cancel | | Dretaults
e

Figure 11.8

Monitoring

Column means

Centroid

Individual configurations

Analysis

gives monitoring information during the fitting
process;

prints the column (i.e. attribute) means of the
configurations;

prints the latent roots and coordinates of the
centroid configuration;

prints rotations of the individual configurations to
the principal axes;

prints an analysis of variation for the
configurations and entities (i.e. samples);

All of these, except monitoring, are shown in the output below.

Generalized Procrustes analysis

Isotropic scaling

Column means of the configurations

Configuration 1

1 2
4.750 5.375

4.250

4
0.500
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Configuration 2

1 2 3 4
5.750 5.000 6.375 4.125

Configuration 3

1 2 3 4
3.875 1.000 4.500 5.250

Configuration 4

1 2 3 4
2.000 4.375 4.375 0.000

Configuration 5

1 2 3 4
3.250 4.250 3.625 0.000

Configuration 6

1 2 3 4
6.125 1.625 6.125 0.000

Rotation of centroid to principal axes

Latent roots

1 2 3 4
0.714 0.174 0.011 0.006

Percentage variance

1 2 3 4
78.88 19.25 1.22 0.65

Coordinates of the consensus configuration

1 2 3 4
1 0.6173  -0.1389  -0.0072 0.0143
2 -0.1303 0.1879 0.0438 0.0374
3 0.3595 0.1338 0.0361 -0.0260
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-0.2390 -0.0142 -0.0166 0.0308
-0.0600 0.0759 -0.0397 0.0094
-0.2297 0.0764 0.0040 -0.0491
-0.2663 -0.2994 0.0432 -0.0055
-0.0516 -0.0213 -0.0636 -0.0113

oO~NO O b

Final coordinates for configuration 1

Variance
1 2 3 4
0.747 0.243 0.011 0.006

Percentage variance

1 2 3 4
74.19 2412 1.12 0.56

Coordinates

1 2 3 4
0.5081 -0.0939 -0.0208 0.0072
-0.0224 0.2261 0.0610 0.0496
0.4854 0.2358 0.0555 -0.0105
-0.2349 0.0622 -0.0049 0.0261
-0.0872 -0.0149 -0.0407 -0.0158
-0.2734 0.0376 -0.0274 -0.0453
-0.3373 -0.3246 0.0151 -0.0073
-0.0382 -0.1282 -0.0378 -0.0041

ONO AP WN =

Rotation matrix

1 2 3 4
0.439 0.280 0.257 0.814
-0.842 0.440 0.204 0.239
0.283 0.852 -0.236 -0.372
0.137 0.044 0.915 -0.378

A WN -

Final coordinates for configuration 2

Variance
1 2 3 4
0.693 0.184 0.061 0.028

Percentage variance

1 2 3 4
71.83 19.03 6.28 2.86
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Coordinates

1 2 3 4
0.6147  -0.1257 -0.0145 0.0315
-0.1278 0.0857 0.0445 0.0361
0.3291 0.0049 0.0878 -0.0635
-0.1837 0.0129 -0.0916 0.0531
-0.1463 0.0992 -0.0848 0.0666
-0.3401 0.2011 0.0508 -0.1167
-0.1411 -0.3280 0.1315 -0.0165
-0.0048 0.0498 -0.1237 0.0094

O~NOO GO P WN -

Rotation matrix

1 2 3 4
0.248 0.058 -0.250 -0.934
-0.716 0.359 -0.599 -0.007
-0.393 -0.906 -0.071 -0.141
0.522 -0.218 -0.757 0.327

A WON -

Final coordinates for configuration 3

Variance

1 2 3 4
0.817 0.144 0.025 0.021

Percentage variance

1 2 3 4
81.17 14.27 2.46 2.10

Coordinates

1 2 3 4
0.6009  -0.1247 0.0045 -0.0076
-0.2587 0.1799 0.0926 -0.0067
0.3982 0.1224 0.0138 0.0217
-0.3332 -0.0110 0.0251 0.1044
0.0943 0.1167 -0.0892 0.0108
-0.1722 0.0182 -0.0088 -0.0231
-0.2808 -0.2537 0.0386 -0.0043
-0.0485  -0.0480 -0.0765 -0.0951

ONO AP WN =

Rotation matrix

0.650 0.061 -0.752 0.084
0.589 -0.097 0.564 0.571
-0.369 0.607 -0.195 0.677
0.307 0.787 0.278 -0.458

A WN -
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Final coordinates for configuration 4

Variance
1 2 3 4
0.678 0.266 0.011 0.031

Percentage variance

1 2 3 4
68.78 26.98 1.12 3.13

Coordinates

1 2 3 4
0.5996  -0.1990 -0.0120 0.0479
-0.0664 0.2300 -0.0580 0.0902
0.3452 0.1843 0.0596 -0.1009
-0.3017 -0.0458 -0.0210 0.0291
-0.0285 0.1086 0.0111 -0.0246
-0.1461 -0.0293 0.0296 -0.0552
-0.2182 -0.3409 0.0304 -0.0463
-0.1840 0.0921 -0.0395 0.0597

ONOO O P WN -

Rotation matrix

1 2 3 4
0.480 0.327 -0.403 0.707
-0.770 0.602 -0.126 0.172
0.421 0.728 0.261 -0.474
-0.016 0.020 0.868 0.496

A ON -

Final coordinates for configuration 5

Variance

1 2 3 4
0.885 0.133 0.010 0.000

Percentage variance

1 2 3 4
86.10 12.91 0.98 0.02

Coordinates

1 2 3 4
0.7446  -0.1389 0.0040 -0.0006
-0.1387 0.1825 0.0190 0.0044
0.2660 0.1170 0.0028 0.0054
-0.2672 0.0248 0.0444 -0.0030
-0.0515 0.0985 -0.0609 0.0062
-0.2672 0.0248 0.0444 -0.0030

OO WN =
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7 -0.3085 -0.2169  -0.0101 -0.0086
8 0.0224  -0.0919  -0.0436  -0.0007

Rotation matrix

1 2 3 4
0.092 0.734 -0.670 0.061
0.794 0.353 0.495 -0.009
-0.601 0.579 0.551 -0.013
-0.006 -0.034 0.052 0.998

A WN =

Final coordinates for configuration 6

Variance

1 2 3 4
0.709 0.263 0.025 0.010

Percentage variance

1 2 3 4
70.41 26.14 2.46 0.99

Coordinates

1 2 3 4
0.6363  -0.1511 -0.0045 0.0073
-0.1678 0.2228 0.1036 0.0510
0.3333 0.1380 -0.0030 -0.0081
-0.1135  -0.1284 -0.0513 -0.0249
-0.1407 0.0472 0.0262 0.0131
-0.1795 0.2060 -0.0644 -0.0509
-0.3116 -0.3326 0.0538 0.0497
-0.0565  -0.0018 -0.0605 -0.0371

O~NO AP WN =

Rotation matrix

1 2 3 4
1 0.408 0.906 -0.066 -0.087
2 0.686 -0.231 0.582 0.371
3 -0.602 0.351 0.620 0.359
4 -0.003 0.045 -0.522 0.852

Analysis of variation for the configurations

Scaling  Residual Total
0.771 0.094 1.007
0.838 0.126 0.965
1.067 0.088 1.007
1.148 0.104 0.985
1.275 0.068 1.028
1.228 0.085 1.007

OO WN-=-
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Analysis of variation for the entities

Consensus  Residual Total
1 2.405 0.037 2.442
2 0.334 0.072 0.406
3 0.894 0.076 0.970
4 0.351 0.077 0.428
5 0.066 0.069 0.136
6 0.366 0.097 0.463
7 0.975 0.057 1.032
8 0.044 0.080 0.123
Initial within-configuration sum of squares 463.750
Initial between-configuration sum of squares 509.875
Final residual sum of squares 0.566
Number of steps to convergence 7
The first graph (Figure 11.9)  [Miesssumeies sl ==
plots the positions of the eight ZHAms SEenBsaRNENY o um
port-wines in the consensus "
configuration; the default is to 02 2
display the first three principal % il ! 2 :
axes. This allows you to study 5 v
the similarities of the port- S oo
wines, as observed overall by _“_7
the assessors.
' .
m ]
% auls © g 3 AR
¢ =2 2 =2 =3 7B @ = #@ =&
Consensus[1] Consensus[2]

Double-click on plot to edit it

Figure 11.9
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The individuals plot (Figure

li Genstat Graphics Viewer - U
File Edit View Tools

Help

65

11.10) is similar, but also [swews ssezw oaww v, S 0w
shows how the points in each vl kY i
. 3
conﬁguratlon are mapped to the S e o =
equivalent points of the ) ﬁ‘}./‘/ =2 F
. 2 pod. i
consensus. This allows you to :;; I~ ’
assess the consistency of the 5
assessors. 041
-0.6 o
l 0.4 4 b |
E 0.2 o ’;
8 e ' R gt
B 50d B /_aa:"“') o AR
é = “&1 L " - t‘“"’wgﬁ-
a 024
-0.4 4
¥ 2 2 3 2 3 % @ & & &z

The projection plot (Figure
11.11) shows the fitted
projections of the attributes, as
observed by each assessor, onto
the first two principal axes. A
different colour is used for each
attribute, taking the standard
order of the Genstat pens (by
default red, green, blue, cyan,
mauve, yellow, brown etc.).
Each line is numbered by its
assessor. This shows how each
of the attributes contributes to
the consensus picture.

Notice that the fitted
attributes (plotted in cyan) for
the null attributes of assessors 4-
6 are negligible. The scores
fitted to these null attributes can
be regarded as representing
random variation, and used as a

Dimension[1]

] Double-click on plot to edit it
Figure 11.10

il Genstat Graphics Viewer
File Edit View Tools Window Help

BH@R - S6 @D @ @Rk

Projection plot

4 3,
1 e .
S~
e

S

Double-click on plot to edit it

Figure 11.11

yardstick for assessing the other scores. (However, if one of the null fitted scores were
found to be noticeable, this would indicate a large Procrustes deviation between this
assessor and the consensus -which might suggest that this assessor should treated
separately.)
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11.1 Practical

Genstat spreadsheet file |[Fomsslmmmeiianion = 00 | e
Bordeaux. g sh contains results T..l'is ;:mi = Black{_‘unentQ Sy'm:he\:icFm1LD amenm.l.ﬁ Black?eppEKD 5ﬂyu 5pir:y1 vEmu: nmmu +
of a sensory assessment of e : = : I R
aroma attributes of 24 Bordeaux L = - .
wines. Do a generalized i i i—= .
Procrustes analysis and examine [ | T — " -
a consensus plot of the first two Z
dimensions. (Hint: use the Ten o C = 2 : I -
Berge method to speed |== ; & = .
convergence.) Rows 1-5 are St [EE—— d

Estéphe wines, 6-10 are St Figure 11.12

Julien, 11-15 are Margaux, 16-

20 are St Emilion, and 21-24 are regional Bordeaux wines (see the row labels of the
matrices). Can you see this structure reflected in the plot?



12 Other facilities

This chapter illustrates menus from most of the main areas of multivariate analysis
provided by Genstat. Other menus are listed below with references to sections in the
Guide to the Genstat Command Language describing the associated commands and

methodology:

Discriminant analysis Part 2 Section 6.5,
Factor analysis Part 2 Section 6.11,
Correspondence analysis Part 2 Section 6.13,
Canonical correlation analysis Part 2 Section 6.9,
Redundancy analysis Part 2 Section 6.14,
Canonical correspondence analysis Part 2 Section 6.15,
Partial least squares regression Part 2 Section 6.8, and
Multivariate analysis of distance Part 2 Section 6.6.3.

Other multivariate facilities, not available through the menus, include ridge and principal-
component regression (procedure RIDGE; Part 2 Section 6.7), analysis of skew symmetry
(procedure SKEWSYMMETRY; Part 2 Section 6.17), the construction of identification keys
(procedure BKEY; Part 2 Section 6.22) and random classification forests (procedure
BCFOREST).
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Associations 19
Average linkage 28
Biplot 13
axis 13
Biplot axis
interpolative 14
predictive 13
Boxplot 3
Canonical correlation analysis 67

Canonical correspondence analysis 67

Canonical variate 18
Canonical variates analysis 16
scores 18
Centroid configuration 55
Classification tree 40
over-fitting 41
accuracy 41
identification 45
misclassification rate 44
root 40
terminal node 40
Correspondence analysis 67
Covariate 37
Dendrogram 28, 29
Discriminant analysis 67
Dissimilarities 19
Distance 19
Equality of roots 11
scree plot 11
Euclidean distance 28
Factor analysis 67
Free choice profiling 55
Furthest neighbour 28
Generalized Procrustes analysis 55
assessor 55
consensus configuration 64
individuals plot 65
projection plot 65
scaling 58
Gini information 41
Graphics Toolbar 13, 51
Data-info tool 51
hot point icon 13
Hierarchical cluster analysis 27
Histogram 3
Hot point 13
Identification key 67
Indented tree 41, 48

Isotropic scaling 58
K-means clustering 30
Mahalanobis distance 30
Maximal predictive classification 30
Mean posterior improvement 41
Median sorting 28
Monotone regression 22
Multidimensional scaling 22
Multivariate analysis of variance 37
Multivariate Normality 37
Nearest neighbour 28
Non hierarchical cluster analysis 30
Non-metric scaling 22
Partial least squares regression 67
Principal component 9, 11
Principal component regression 67
Principal components analysis 9
scores 12
Principal coordinates analysis 19
Pruning a classification tree 41, 49
Pruning a tree 41
pruning 49
Redundancy analysis 67
Regression tree 47
over-fitting 49
accuracy 47
pruning 49
root 47
terminal node 48
Ridge regression 67
Root 40, 47
Scatter plot matrix 7, 8
Sensory analysis 55
Similarities 19, 27
Single linkage 28
Skew symmetry 67
Summary statistics 2
Tied data 23
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