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Introduction  

 

QTL analysis is used to identify genetic factors underlying phenotypic variation in traits 

in a wide variety of contexts. The Genstat QTL system comprises a set of menus and 

commands to facilitate QTL analysis, bringing together a wide range of statistical 

techniques. The development has a particular focus on experimentation in plants but 

many of the techniques are more widely applicable. This Guide is designed to introduce 

you to these methods, and to enable you to use them correctly and effectively. The Guide 

focuses primarily on the menu interface, but also provides some information on use of 

commands. 

Chapter 1 gives an overview of the Genstat QTL system, describes the different types 

of QTL analysis that can be done, the data required, and the different formats that can be 

used to import data into Genstat. The QTL Data Space can be used to manage these data 

structures and to capture the results of analysis. The QTL Data Space can be saved and 

reloaded to enable continuation of an analysis. A set of examples is introduced to 

demonstrate the range of analyses possible.  

Chapter 2 gives details on how to import phenotypic and genotypic data structures into 

the QTL Data Space, and on the methods available to check, summarize and display the 

imported data structures. 

QTL analysis in Genstat uses trait means for each genotype (or line), but usually data 

will be obtained from a replicated trial and so some preliminary analysis is required to 

obtain predicted means. Chapter 3 describes the facilities for such a preliminary analysis, 

and gives examples of some models commonly used for analysis of field trials.  

Where several trials or experiments have been done in different environments, or at 

different times, it is often of interest to investigate differences in phenotypic response 

across environments, often termed genotype by environment (or G×E) interaction. 

Chapter 4 describes the use of a mixed model to quantify and describe the G×E 

interaction, and the use of other exploratory tools (AMMI and GGE biplots) to investigate 

the structure of the G×E interaction. 

Chapters 5-8 describe QTL analysis for different populations of bi-parental lines. All 

of these models require that a genetic linkage map is available for the population. If that 

is not the case, Chapter 5 describes the facilities available for constructing and checking 

a map from a set of marker scores. Chapter 6 describes the statistical theory underpinning 

the Genstat QTL linkage models, including calculation of genetic predictors, marker 
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regression, simple interval mapping and composite interval mapping, with illustration for 

an inbred population with a single trait evaluated at a single site. Chapter 7 extends the 

analysis for inbred populations to the case where a single trait has been evaluated in 

multiple environments; or where multiple traits have been assessed on a single trial. 

Chapter 8 describes linkage analysis for cross-pollinated populations. 

Chapter 9 describes linkage analysis for broader populations, often called association 

mapping analysis. This requires the consideration of population structure and linkage 

disequilibrium. 

Chapter 10 gives some background information on linear mixed models, which form 

the analysis engine for the QTL system in Genstat. There is some technical detail 

alongside an example of a simple analysis of a field trial using the Genstat menu system. 

Chapter 11 describes the use of commands for QTL analysis, which may be useful for 

very extensive data sets. 
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1 Overview of the Genstat QTL system 

 

QTL analysis is used to identify genetic factors underlying phenotypic variation in traits 

in a wide variety of contexts. The Genstat QTL system comprises a set of menus and 

commands to facilitate QTL analysis, bringing together a wide range of statistical 

techniques. Genstat’s efficient algorithm for analysis of linear mixed models is used as 

the engine for QTL analysis. The QTL system has a particular focus on experimentation 

in plant populations but many of the techniques are more widely applicable, e.g. to animal 

or human populations.  

 

This chapter describes: 

 the different types of QTL detection possible in Genstat (Section 1.1) 

 what data are required to perform QTL detection in Genstat (Section 1.1) 

 the different types of experimental data that can be imported and processed 

(Section 1.1) 

 how to use the QTL Data View panel (Section 1.2) 

 the example data sets used in this Guide (Section 1.3) 

 some analysis paths that can be used to detect and/or model QTLs (Section1.4) 
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1.1 Methods for QTL detection in Genstat  

 

Genstat’s QTL system enables QTL detection for both structured populations and for 

more general association panels - we will describe the facilities and requirements for each 

of these in turn.  

 

 Linkage analysis 

Linkage analysis can be performed for populations of inbred lines derived from an F1 

cross of two homozygous parents as either F2 offspring, a back-cross of the F1 lines to 

one of the parents (BC1), double haploid offspring of the F1 generation (DH1), 

recombinant inbred lines of the nth generation (RILn), or back-crossed inbred lines 

(BCxSy). Linkage analysis is also possible for a cross-pollinated population derived from 

the cross of two heterozygous parents (CP). For all of these populations, linkage analysis 

can be done for a single trait in a single environment (Chapter 6) or across multiple 

environments, with estimation of QTL × environment (QTL×E) interactions (Chapter 7). 

Alternatively, linkage analysis can be done for multiple traits in a single environment, 

allowing an effect of a QTL to be tested on multiple traits (Chapter 7).  

These analyses require trait means for each line (or genotype) of the population (in 

each environment), together with genotype scores at a set of genetic markers and a genetic 

linkage map containing these markers. The set of genotype marker scores may contain 

missing values. Raw data from trials can be loaded and then subjected to a preliminary 

analysis to obtain trait means with standard errors (Chapter 3) which can be used as 

weights in linkage analysis (Chapters 6 and 7). 

QTL estimation is done by simple or composite interval mapping using linear mixed 

models. Selection of candidate QTLs for use as cofactors can be automatic to manual, 

with back-selection used to obtain a final model. QTL scans can be plotted or saved. The 

selected QTLs can be saved with test statistics, confidence intervals and estimates of the 

QTL effects and standard errors.  

 

 Association analysis 

Association analysis can be performed on broader populations for a single trait in a single 

environment or across multiple environments with estimation of QTL×E interactions 

(Chapter 9). Identification of population substructure (i.e. genetic relatedness) is an 

essential step prior to this analysis, and can be achieved by explicit specification of 

population groups, by formation of a kinship matrix or by eigenanalysis (Patterson et al., 
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2006) (Chapter 9). Modelling of the decay in linkage disequilibrium can be used to 

investigate the extent of linkage within the chromosomes. 

These analyses require trait means for each line (or genotype) of the population (in 

each environment), together with genotype scores at a set of genetic markers and, to aid 

interpretation, a genetic linkage map containing these markers. The set of genotype 

marker scores may contain missing values. Rare alleles, with frequency below a user-

specified threshold, may be excluded from analysis. Raw data from trials can be loaded 

and then subjected to a preliminary analysis to obtain trait means with standard errors 

(Chapter 3). 

QTL estimation at each marker position, accounting for population substructure, uses 

a linear mixed model. The results of the association analysis at each of the marker 

positions can be saved as the significance level of the test, with the estimated effect and 

standard error for each allele.  

 

1.2 The menu system and QTL Data View 

 

The menus for QTL analysis can be found under the Stats menu on the menu bar (see 

Figure 1.1). They can also be accessed through the QTL Data View, which can be activated 

via the View QTL Data Space item (Figure 1.1) or under the View menu on the menu bar. 

The QTL Data View will then appear in a panel at the left-hand side of the screen (Figure 

1.2). This space is shared with the Window Navigator and Data View (if activated) and the 

different views can be switched using the tabs at the bottom of the panel (Figure 1.2). The 

QTL Data View panel has three components. The top section provides a set of shortcuts for 

loading, deleting and saving data from the QTL Data Space, which provides a way of 

managing data structures to be used for QTL analysis. The middle section provides a 

shortcut to the menus found under the QTLs (Linkage/Association) menu item (Figure 1.1), 

and the bottom section displays the data structures that have been loaded into the QTL 

Data Space. 

Data structures can be added into the QTL Data Space when importing trait, map or 

marker data using the Data Import/Export menu within the QTL system (Chapter 2). Data 

structures within Genstat can also be added to the QTL Data Space using the icon at the 

top of the QTL Data View panel ( ). Figure 1.3 shows the data space populated by trait 

means (under heading Phenotypic means), and map and marker data (under heading 

Genotypic data) prior to QTL analysis. The data structures in the QTL Data Space will be 

entered automatically into the QTL menus whenever possible. Where there is a choice of 
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structures, such as a choice of phenotypic traits for analysis, by default only those in the 

QTL Data Space will be displayed as available data. Following QTL analysis, buttons on 

the top section of the QTL Data View pane can be used to save and export results to the 

Flapjack graphical genotyping tool (Milne et al., 2010) ( ) and to generate a report of 

the analysis ( ). 

 

 
Figure 1.1: Accessing the QTL menu. 

 

In this Guide, we show how to perform QTL detection using the menu system, but all 

of these analyses can be achieved using commands in the Genstat language. Use of the 

menus will generate commands in the Input Log window that can be used to repeat the 

analysis at a later date, if required. An overview of these commands is given in Chapter 

11, and full documentation can be found within the Genstat Help System. 
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Figure 1.2: QTL Data View pane on left side of the Genstat window.  

 

 

Figure 1.3: QTL Data View with trait means, marker scores and map information from the 

CIMMYT maize trials (Section 1.3.2) loaded prior to QTL analysis. 
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1.3 Example data sets 

 

Within this Guide, we use several example data sets to illustrate the methods. The data 

files for these examples can be accessed via Help | Examples | Data Sets, then under Filter 

by topic: select A Guide to QTL Analysis. We introduce these data sets here in order to give 

some insight into the types of data that the Genstat QTL system is designed to deal with. 

In the next section, we indicate the types of analysis that might be appropriate for each 

data set. 

 

 Steptoe-Morex barley trial 

This population is the well-known Steptoe × Morex double haploid population developed 

in the early 90s by the North American Barley Mapping Project. The objective was to 

improve the understanding of the genetic basis of agronomic and malting quality traits in 

barley. The population consists of 150 double haploid lines, which at that time was 

genotyped with 116 RFLP markers. The population was extensively evaluated for several 

agronomic and malting quality traits (Hayes et al., 1993) in many locations and years (US 

and Canada). Here we use trait means for yield and heading date from one of those trials, 

held in file SxM_pheno.csv. The marker and map information are held in files 

SxM_geno.txt and SxM_map.txt, respectively. 

 

 CIMMYT maize trials 

This data set comes from the maize drought stress breeding programme of the 

International Centre for Maize and Wheat Improvement (CIMMYT). The population is a 

F2 generated by crossing a drought tolerant parent (P1) with a drought susceptible one 

(P2). Seeds harvested from each of 211 F2 lines were used to test F3 families in 8 different 

environments; no, intermediate, and severe water stress trials in 1992 (NS92a, IS92a, 

and SS92a respectively), intermediate and severe water stress trials in 1994 (IS94a, 

SS94a), and low and high nitrogen in 1996 (LN96a, LN96b, and HN96a). The suffix ‘a’ 

indicates a winter trial, and ‘b’ a summer trial. The measured traits were: yield in kg/plot 

(yld), anthesis-silking interval in days (asi), number of ears per plant (eno), days to 

male flowering (mflw), and plant height in metres (ph). DNA was extracted from each 

of the 211 F2 plants to produce a total of 122 RFLP and AFLP markers covering the 10 

maize chromosomes. Details of the data set can be found in the original publications 

(Ribaut et al., 1996; Ribaut et al., 1997). Trait means for each genotype from each trial 

are held in file F2maize_pheno.csv. The marker and map information are held in files 

F2maize_geno.txt and F2maize_map.txt, respectively. 
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 CIMMYT spring wheat trials 

This data set comprises raw plot data from a series of wheat trials conducted in Mexico 

by CIMMYT. The different trials took place under different regimes of irrigation and 

temperature, there were 4 trials across two years, labelled as DRIP05, HEAT05, HEAT06, 

IRRI06. Within each trial, a set of 167 progeny of a RIL (Recombinant Inbred Line; 8 

generations) population were tested alongside the population parents (Seri and Babax). A 

lattice design with two replicates was used for each trial. In the first replicate the entries 

were not randomized, as they were considered to be a random selection from a population. 

At site HEAT06, the lattice was not exactly rectangular and so a check variety (200) was 

used to fill in the last row of the design. The yield for each plot at each site is given in file 

SB_yield.csv. The marker and map information are held in files 

RILwheat_geno.txt and RILwheat_map.txt, respectively; there are no marker 

scores for lines SB004 and SB084. 

 

 MABDE barley association panel 

A research programme (MABDE) was set up to investigate patterns of adaptation in 

barley. In this project a large set of barley genotypes (~190 genotypes) were evaluated in 

Europe and in the Mediterranean region. More details about this population and the 

research project can be found in Comadran et al. (2009). Here we look at yield in one of 

the environments, for a set of 179 genotypes. Mean yields for each genotype are held in 

AMP_Barley_pheno.csv with groups for association (linkage disequilibrium) 

mapping. The population was genotyped by DArTs. Marker scores and map information 

are held in files AMP_Barley_geno.txt and AMP_Barley_map.txt, respectively, 

and kinship data in AMP_Barley_Kmatrix.txt. 

 

1.4 Example pipelines for QTL detection  

 

In this section, we give an overview of the analysis path that we will follow for each of 

our example data sets in order to illustrate the different types of analysis that are available. 

Details of how to load the data and implement these analyses follow in subsequent 

chapters. 

 

 Steptoe-Morex barley trial 

This data set comprises yield and heading date means from a single trial. The first step is 

to check these traits and the genotype marker scores and map for errors or inconsistencies 

(Chapter 2). We can then detect QTLs for each trait separately, using simple interval 
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mapping and/or composite interval mapping followed by model selection (Chapter 6). 

Finally, we can perform multi-trait QTL detection by joint modelling of the two traits 

(Chapter 7). 

 

 

 

 CIMMYT maize trials 

This data set comprises means from 5 traits in 8 environments. The first step is to check 

these traits and the marker scores and map for errors or inconsistencies (Chapter 2). For 

each trait, we can then model the genotype by environment variation (G×E, Chapter 4) 

and use the results to investigate QTL by environment (QTL×E) interactions (Chapter 7). 

 

 

 

 

 CIMMYT spring wheat trials 

This data set comprises plot yields from 4 trials. The first step is to check the plot yields 

and the marker scores and map for errors or inconsistencies (Chapter 2). We then need to 
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analyse the raw yield data from each trial to obtain trait means for each genotype in each 

environment (Chapter 3). We can then model the genotype by environment variation 

(G×E, Chapter 4) and use the results to investigate QTL by environment (QTL×E) 

interactions (Chapter 7). 

 

 

 

 MABDE barley association panel 

This data set comprises mean yields from a single trial. The first step is to check the yields 

and the marker scores and map for errors or inconsistencies (Chapter 2). Investigation of 

the population substructure is required before analysis, and can usually be captured by 

eigenanalysis (Chapter 9). Investigation of linkage disequilibrium can also give insight 

into the genetic structure of the population. Finally we can perform association analysis 

(Chapter 9). 
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2 Importing and checking phenotypic and genotypic 

data 

 

Prior to any statistical analysis, it is necessary to import and check the data. For QTL 

analysis, both phenotypic (trait) and genotypic (marker and map) data are required. In this 

chapter we describe how to complete these tasks successfully using the QTLs 

(Linkage/Association) menu, which will load the imported data into the QTL Data Space 

(Section 1.2), ready for further analysis. 

 

In this chapter you will learn how to: 

 import phenotypic data, both raw data and pre-processed trait means (Section 2.1) 

 import genotypic data, including marker, map and kinship data (Section 2.1) 

 load and save a QTL Data Space (Section 2.2) 

 manipulate data in the QTL Data Space (Section 2.3) 

 summarize phenotypic and genotypic data (Section 2.4) 
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2.1 Importing data 

 

Two types of data are required for a QTL analysis: phenotypic data (measurements of 

trait values) and genotypic data (evaluation of genotyping at markers and positions of 

markers on a genetic map). Following, we describe how to import phenotypic and 

genotypic data structures into the QTL Data Space.  

 

 Phenotypic data 

Phenotypic data sets contain the quantitative traits (phenotypes) measured for all 

individuals (i.e. genotypes) in the population. Phenotypic data may be loaded as 

unprocessed data, i.e. raw measurements from a field trial or other experiment, or as pre-

processed trait means for each genotype. We will consider the cases of raw data and trait 

means separately. 

 

2.1.1.1 Raw data 

Raw plot or unit data from an experiment (or several experiments) should consist of one 

or more columns of trait (phenotypic) measurements, a column specifying the genotype 

for each measurement and columns that identify the experiment and its structure, e.g. the 

trial name, and the origin of measurements from blocks and plots in the experimental 

design. This data file must have one row for each observation plus a header row indicating 

the column names. The data imported should comprise the whole experiment so that a 

valid analysis can be carried out; if only a subset of the genotypes are required for QTL 

analysis, this subsetting can be implemented as part of that analysis (see Section 2.3.2).  

For example, Figure 2.1 shows the format of raw data from the CIMMYT spring wheat 

trials (Section 1.3.3) held in file SB_yield.csv. The trial (Env) and genotype 

(Genotype) labels for each measurement are given in the first two columns. These are 

coded as Genstat factors, indicated by using ! at the end of the column name. The third-

seventh columns give information on the trial design and field layout, to be used in 

estimation of trait means (Chapter 3), and the final column gives individual plot 

measurements of yield. Data in the same format can also be loaded from Genstat 

spreadsheets or workbooks, and Excel or tab-delimited text files.  
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Figure 2.1: Raw phenotypic data from the CIMMYT spring wheat trials (Section 1.3.3) held in 

file SB_yield.csv: one row for each plot in each trial. 

 

Raw phenotypic data can be imported either by clicking on menu items Stats | QTLs 

(Linkage/Association) | Data Import/Export | Load Phenotypic data (Figure 2.2) or by using the 

Open QTL data file icon ( ) on the QTL Data View and selecting the option Phenotypic data 

file. Both routes launch the Open Phenotypic Data files window (see Figure 2.3). Select the 

correct data type, with the setting Plot or unit data, then click on the Open button to initiate 

the Read QTL phenotypic plot data window (see Figure 2.3).  

 

 
Figure 2.2: Accessing the Open Phenotypic Data files menu. 

Env! Genotype! Plot! Rep! Subblock! Row! Column! yield

DRIP05 SB001 1 1 1 1 1 363

DRIP05 SB002 2 1 1 1 2 343

DRIP05 SB003 3 1 1 1 3 373

DRIP05 SB004 4 1 1 1 4 396

DRIP05 SB005 5 1 1 1 5 335

DRIP05 SB006 6 1 1 1 6 396

DRIP05 SB007 7 1 1 1 7 421

DRIP05 SB008 8 1 1 1 8 384

DRIP05 SB009 9 1 1 1 9 365

DRIP05 SB010 10 1 1 1 10 337

… … … … … … … …
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Figure 2.3: Importing phenotypic raw data from file SB_yield.csv. 

 

All data that will be used in the analysis should be copied into the Data: box, and if the 

data arises from multiple experiments (environments), then the factor that labels these 

(here Env) should be entered as the Environment factor:; this factor will be used to subset 

the data for single trial analysis (Chapter 3). By default, the raw data will be added into 

the QTL Data Space (under Phenotypic raw data) and should appear in the QTL Data View 

(Figure 2.4) once the OK button has been pressed. The Output window will also show 

summaries of the variables imported (Figure 2.4). 

Alternatively, raw data and associated factors can be loaded directly into Genstat (e.g. 

using File | Open) and then transferred into the QTL Data Space either by:  

 selecting the Add data in Genstat to QTL data space icon ( ) on the QTL Data View, 

followed by the Phenotypic raw data tab; or,  

 right clicking on the Phenotypic raw data folder in the QTL Data View, then 

selecting Add to data space. 
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Figure 2.4: QTL Data View and Output window after importing raw data from file 

SB_yield.csv. 

 

2.1.1.2 Pre-processed trait means  

Trait means for each genotype are assumed to have been produced from an appropriate 

analysis of experimental data and ready for QTL analysis. For a single trial, this data file 

must have one row for each genotype plus a header row indicating the column names. If 

data from multiple experiments (environments) are provided, there should be one row for 

each genotype in each environment. The trait means must be classified by a factor 

indicating the individual genotypes and experiments and there must be only one value for 

each genotype × environment combination.  

For example, Figure 2.5 shows the format of the trait mean data from the CIMMYT 

maize trials (Section 1.3.2) held in file F2maize_pheno.csv. The trial (env) and 

genotype (genotype) names for each measurement are given in the first two columns, 

followed by predicted means for five phenotypic traits: asi (anthesis-silking interval), 

eno (number of ears), mflw (days to male flowering), ph (plant height) and yld (yield). 

Data in the same format can also be loaded from Genstat spreadsheets or workbooks, and 

Excel or tab-delimited text files. Data in the .qua format of MapQTL® (van Ooijen, 2009) 

can also be loaded. 
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Figure 2.5: Trait means from the CIMMYT maize trials (Section 1.3.2) held in file 

F2_maize_pheno.csv: one row for each genotype in each environment. 

 

Phenotypic data can be imported using the Open Phenotypic Data files window, accessed 

either by Stats | QTLs (Linkage/Association) | Data Import/Export | Load Phenotypic data (Figure 

2.2) or using the Open QTL data file icon ( ) on the QTL Data View and selecting the option 

Phenotypic data file. Figure 2.6 shows the Read QTL Phenotypic Means window, which is 

initiated from the Open Phenotypic Data files window when data type Trait means is 

specified (see Figure 2.3). The five traits have been copied into the Trait means: box, and 

the factors genotype and env have been assigned as the Genotype factor: and Environment 

factor:, respectively. When loaded, by pressing the OK button, these structures will appear 

in the QTL Data View in the Phenotypic means folder under category PhenoMeans. 

 

 

Figure 2.6: Window for importing trait means from the CIMMYT maize trials (Figure 2.5). 

 

env! genotype! asi eno mflw ph yld

IS94a G001 2.65 8.85 91.55 154.8 337.3

SS94a G001 2.01 8.77 89.39 163.8 447.6

HN96b G001 0.1 12.5 56.2 191 657

LN96b G001 3.1 7.9 61.6 107 71

LN96a G001 4.8 8.9 97.8 97 145

IS92a G001 -2.35 11.58 92.94 205.4 672

NS92a G001 -0.17 16.55 89.13 239.7 1260

SS92a G001 1.07 10.21 90.14 205.8 493.4

IS94a G002 2.44 9.92 88.43 173 603.1

SS94a G002 3.43 8.53 84.63 167 331.5

… … … … … … …
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Alternatively, trait means can be loaded directly into Genstat (e.g. using File | Open) 

and then transferred into the QTL Data Space by either:  

 selecting the Add data in Genstat to QTL data space icon ( ) on the QTL Data View, 

followed by the Phenotypic means tab; or, 

 by right clicking on the Phenotypic means folder in the QTL Data View, then 

selecting Add to data space. 

 

 Genotypic data 

Genotypic data sets contain scores for a set of markers on each genotype and a genetic 

map containing those markers. Genstat can import genotypic data held in Flapjack text, 

R/qtl csvs or csvsr, or MapQTL® .loc and .map formats. Flapjack and MapQTL® formats 

both have two input files: a genotype file that contains a genotype by marker (locus) 

matrix of marker scores and a map file that contains the linkage groups and marker 

positions (using Haldane’s distance in cM). The R/qtl formats consist of a single file 

containing both marker scores and map information. We give more details in the 

following subsections. 

 

2.1.2.1 Flapjack marker and map files 

The Flapjack (Milne et al., 2010) text file format is recommended as being the most 

flexible, allowing the user’s choice of marker categories and providing some data 

checking/validation. This format can be used for any type of population. 

The Flapjack format genotype file is a text file (tab delimited by default) containing a 

data matrix where rows correspond to parental lines (if present) and genotypes, and 

columns correspond to markers. The first row has an empty cell in the first column, 

followed by marker names. The second (and following) row(s) consist of the line name, 

followed by marker scores. For populations derived from one (or more) parental crosses, 

the parents must be listed before offspring. For these parental lines, a code is used to 

define the score for each parent at each marker. This code does not have to be a single 

character. For the offspring lines, codes for both parental alleles should be specified, 

separated by a separator (by default /), except for homozygotes, where a single code can 

be used. Note, in the case of association mapping populations, there are no parents. 

For example, Figure 2.7 shows a portion of a marker score file (F2maize_geno.txt) 

in Flapjack format. This is an F2 population derived from two homozygous parents, so it 

is straightforward here to code the first parent as 1 and the second as 2 (we could have 

alternatively used A and B). Using these parental genotypes, the permitted codes for fully 
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informative markers on offspring are then: 1/1 (or 1), 1/2, 2/2 (or 2). Missing values are 

indicated by - (synonymous to -/-). In the case of partially informative markers (e.g. 

dominant markers) genotypes are coded as 1/- or 2/-, depending on whether the dominant 

allele originated from parent 1 or parent 2. 

 

 

Figure 2.7: Top section of Flapjack text file F2maize_geno.txt, which contains marker 

scores for the F2 population used in the CIMMYT maize trials.  

 

The Flapjack format map file is a text file (again tab delimited by default) containing 

three columns which define the genetic map (see Figure 2.8). There is no header line. The 

first column contains the marker names, the second codes the linkage group that contains 

the marker, and the third column specifies the marker position within that linkage group. 

 

 

Figure 2.8: Top section of Flapjack text file F2maize_map.txt containing genetic map 

information for the F2 population used in the CIMMYT maize trials. 

 

L008 L058 L094 L040 L112 L062 L065 L085 L039 L082 L123 L070 L117 …

Parent1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

Parent2 2 2 2 2 2 2 2 2 2 2 2 2 2 …

G001 1/2 2/- 1/2 1/2 1/2 1/2 2/- 1/2 1/2 1/2 1/2 - 2/- …

G002 1/2 2/- 1/2 1/2 2 2 2/- 2 2 1/2 1/2 1 1 …

G003 1/2 2/- 2 2 2 2 2/- 2 2 2 2 2 2/- …

G004 1/2 2/- 2 2 2 2 2/- 1/2 1/2 1/2 1/2 1/2 2/- …

G005 2 2/- 2 2 2 2 2/- 2 2 2 2 2 2/- …

G006 2 2/- 1/2 1/2 1/2 1/2 2/- 1 1 1 1 1/2 2/- …

G007 1/2 2/- 2 2 2 2 1 1 1 1/2 1/2 1/2 2/- …

G008 1 1 1 1 1 1 2/- 1/2 1/2 1 1 1 2/- …

… … … … … … … … … … … … … … …

L008 1 0

L058 1 7.4

L094 1 41.3

L040 1 73.4

L112 1 83.4

L062 1 84.8

L065 1 127.5

L085 1 141

L039 1 150.2

L082 1 174.8

L123 1 195.8

L070 1 206

L117 1 215.3

… … …
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2.1.2.2 R/qtl csvs and csvsr files 

R/qtl csvs and csvsr files (Broman and Sen, 2009) both use comma-separated format. The 

R/qtl csvs format is similar to the Flapjack format, but does not allow specification of 

parental codes and requires the map to be included in the same file. This format can only 

be used for F2, DH1, BC1, or RILn populations. 

The R/qtl csvs format genotype file is a .csv file containing a data matrix where rows 

correspond to genotypes, and columns correspond to markers. The first row has an 

identifier in the first column (used for the set of genotype labels), followed by marker 

names. The second row has an empty cell in the first column, followed by a label for the 

linkage group containing each marker. The third row has an empty cell in the first column, 

followed by the position of each marker within the linkage group. The fourth (and 

following) row(s) consist of the line name, followed by marker scores. Marker scores are 

coded using the characters A (homozygous like parent A), B (homozygous like parent B), 

H (heterozygous), C (not A) or D (not B). The default missing data code is ‘-’. For 

example, Figure 2.9 shows the top few rows of a marker score file 

(F2maize_geno_csvs.csv) in R/qtl csvs format. 

 

 

Figure 2.9: Top section of R/qtl csvs format combined marker and map file for the F2 population 

used in the CIMMYT maize trials. 

 

The R/qtl csvsr format is a transpose of the csvs format, containing a data matrix where 

rows correspond to markers and columns correspond to genotypes. 

 

2.1.2.3 MapQTL .loc and .map files 

The MapQTL® format (van Ooijen, 2009) uses separate text files for the marker and map 

information. This format can be used for F2, DH1, BC1, RILn or CP populations. Details 

of the permitted codes for each type of population can be found in van Ooijen (2009). 

id L008 L058 L094 L040 L112 L062 L065 L085 L039 L082 L123 L070 L117 …

         1 1 1 1 1 1 1 1 1 1 1 1 1 …

         0 7.4 41.3 73.4 83.4 84.8 127.5 141 150.2 174.8 195.8 206 215.3 …

G00A H C H H H H C H H H H - C …

G00B H C H H B B C B B H H A A …

G003 H C B B B B C B B B B B C …

G004 H C B B B B C H H H H H C …

G005 B C B B B B C B B B B B C …

G006 B C H H H H C A A A A H C …

G007 H C B B B B A A A H H H C …

G008 A A A A A A C H H A A A C …

… … … … … … … … … … … … … … …
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The top of the marker file for the CIMMYT maize F2 population (F2maize.loc) is 

shown in Figure 2.10. The first four lines of the marker file specify the population name 

(name) and type (popt), the number of markers (nloc) and the number of individuals 

(nind). These lines are followed by a list of scores for each marker. The number of 

markers and number of individuals must match that given at the start of the file. In order 

that Genstat can combine the marker and trait data without error, it is recommended that 

labels for the individuals are also given at the end of the .loc file (as shown in Figure 

2.11). The order of the labels should exactly match the order in which the marker scores 

are listed. 

 

 

Figure 2.10: Top section of the MapQTL file F2maize.loc, containing genotype scores at a 

set of genetic markers for the F2 population used in the CIMMYT maize trials. 

name = F2maize

popt = F2

nloc = 122

nind = 211

L008  H H H H B B H A B H A H H H H H H H A - A H H B H H H H A H 

H B H B A H B A B H H H H H B H H H H A B A H A A A H H B H H H A 

H B H H H A A H H B B A B B A H A B B A H B H A H H B H A H A A H 

A A H B H B A A H H H B B A H H B H H B A H A H H A A H H H H H B 

H B H B B A B H B A A B A H B A A H B A B B H B A A H B A H H H H 

B H B B H A A B B H B B B B A H H H H A A H A H H H A A H H H H A 

H B H A A H A B A A A H B H H H 

L058  C C C C C C C A C C A C C C C C C C A C A C C C C C C A C C 

C C C C A C C A C C C C C C C C C C C A C A C A A A C C C C C C A 

C C C C C C A C C C C A C C A C A C C A C C C A C C C C A C A A C 

A A - C C C A A C C C C C A C C C C C C A C A C - A A C C A C C C 

C C C C C - C C C A A C C C C A A C C - C C C C C C C C A C C C C 

C - C C C - C C C C C C C C A C C A C A C C A C C C A C C C - C -

C C C C A C A C A A A C C A - C 

L094  H H B B B H B A H H H H A H H H H H A H A H B H H H B H H B 

H H H B A B B A H H B A - A B B H A H H B B B A A H H B H H H H -

H H B H B H H A H B B - B B A A H H H A H B H A B B B H H H H H H 

B H H B H B H H H B H B H H B H B A H B A B A H B H H H H A H H H 

B H B B B A B - B A A H H H B H A H H A B H A H B H H H H H H A H 

B H A B H A B B H B B H H H H H H A H A B H H A H H H A H B A A H 

H H H H H H H H H H H H H A H B 

...
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Figure 2.11: Middle section of the MapQTL file, F2maize.loc, showing specification of the 

genotype labels. 

 

The map file (F2maize.map) contains two columns of data, split into sections 

corresponding to linkage groups. Each linkage group has a header of the form “group 

name”, followed by the markers and their position within the linkage group. This format 

is illustrated in Figure 2.12. 

 

Figure 2.12: Top section of MapQTL file (F2maize.map) showing specification of the genetic 

map for the F2 population used in the CIMMYT maize trials. 

L081  B B A H H H B A A H H B A B B H B A H H A H B H A H H A A B 

H A A H H A H H A B H H - H H B H H H H H B A H H A A B A A H H -

A H A H H H A A B H B - A H H A B A B H A A H H H B H H H H A H H 

H H B H H B H H A B H H A B H B B A A H A H H H H H H B H H B B H 

H H A B H H B - B B A B H H H H B H A B B H H B B H B A H H H H H 

B H A A H H B A B B H B H H H H B B H H B H B H H H H A H H B A H 

A H H A B B A A H H H H A B H H 

individual names:

G00A   

G00B   

G003   

G004   

G005   

G006   

G007   

G008   

...

group 1 

L008      0  

L058    7.4  

L094   41.3  

L040   73.4  

L112   83.4  

L062   84.8  

L065  127.5  

L085    141  

L039  150.2  

L082  174.8  

L123  195.8  

L070    206  

L117  215.3  

L032    227  

L013  232.7  

L049  241.6  

L057    248  

L028    252  

L124    266  

 

group 2 

L023      0  

L111   16.4  

L120   55.4  

L002     77  

... 
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2.1.2.4 Loading genotypic data 

Genotypic data can be loaded from files either: 

 via Stats | QTLs (Linkage/Association) | Import/Export | Load Genotypic (Marker and 

Map) data; or,  

 by clicking on the Open QTL data file icon ( ) on the QTL Data View and selecting 

the option Genotypic (marker and map) data file.  

Both routes open the Open Marker and Map Data files menu (Figure 2.13). 

 

 

Figure 2.13: Loading genotypic data, for F2 population used in the CIMMYT maize trials, from 

Flapjack format files F2maize_geno.txt and F2maize_map.txt. 

 

For Flapjack and R/qtl input files, it is necessary to specify the population type to one 

of the settings in Table 2-1. The population type is read from files in MapQTL® .loc 

format.  

For Flapjack format files, it is possible to specify the delimiter used between data 

items, the separator used between parental alleles (offspring only) and the missing data 

string (see Options pane of Figure 2.13). 
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Table 2-1: Permitted population types for QTL mapping in Genstat 18th Edition.  

Code Description 

F2 F2 offspring from F1 cross†  

DH1 Doubled haploid offspring from an F1 cross†  

BC1 Back-cross of parent to an F1 cross† 

RILn Recombinant inbred lines at generation n† 

BCxSy Back-cross inbred lines† 

CP Full-sibling family of outbreeders‡  

Association mapping  Association mapping population 

† two homozygous parents 
‡ two heterozygous parents 

 

By default, all the data read will be loaded into the QTL Data Space. A summary of the 

imported data will be printed in the Output window, together with a report on any errors 

encountered. If errors occur, the default action is to abort the data import procedure so 

that incorrect data (which could lead to an incorrect analysis) is not loaded into the QTL 

Data Space. Details of the checks made are given in Section 2.1.2.5 below. You can then 

check and correct the marker and/or map data before re-loading. Alternatively, you can 

use the If markers contain errors: box to specify that the data should be imported after 

removing all markers found to contain errors. In this case, the error report should be 

carefully examined, paying particular attention to the list of markers removed. 

A set of default names are suggested for the structures loaded into Genstat, however 

alternative names can be provided. The default names and an overview of their contents 

are listed in Table 2-2. The codes for the parental alleles are stored and then translated 

into a standard format. For example, for bi-parental populations arising from F1 crosses, 

the allele for the first parent is translated into code 1 and the allele for the second parent 

is translated into code 2. The offspring alleles are then also translated into this format, 

giving codes of the form 1/1, 1/2, 2/2 and so on (dependent on the population type). For 

each population type, this results in a reference set consisting of all possible offspring 

codes. The scores for each marker are then held as a factor, with the levels defined by the 

reference set, and these factors are all held in a single pointer. A set of genotype labels is 

created to identify the rows of the marker score factors with the individual genotypes; this 

structure is used to help verify the matching of genotypes across the genotypic and 

phenotypic data sets. The remaining structures hold information on markers (names, 
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linkage groups and positions within linkage groups) or parents (allele codes before 

translation and names of parents). 

 

Table 2-2 Structures created on reading in genotypic data for a population with n individuals 

(excluding parental lines) and m markers 

Structure Default name  Type Description 

Marker 

genotypes 

m_scores Pointer Pointer to m factors (one for each marker) 

each with n values. All factors have a 

common set of levels representing the 

reference set of parental allele 

combinations. 

Marker 

names 

m_names Text Text with m values, containing marker 

names. 

Linkage 

groups 

m_linkage Factor Factor with m values, identifying the 

linkage group for each marker. 

Positions 

within 

linkage 

groups 

m_positions Variate Variate with m values, containing map 

position within the linkage group for each 

marker. 

Genotype 

labels 

m_id Text Text with n values, containing genotype 

labels to be used for combining genotype 

and phenotype data sets. 

Parental 

information 

m_parent Pointer Pointer to population parents. Each 

element is a text with n values, defining 

the allele for each parent at each marker.  

Parent 

labels 

m_parentid Text Text with length equal to the number of 

parental lines, containing list of parent 

names. 

 

Alternatively, marker score and map data in the required format (see Table 2-2) can 

be loaded directly into Genstat (e.g. using File | Open) and then transferred into the QTL 

Data Space by either: selecting the Add data in Genstat to QTL data space icon ( ) on the 

QTL Data View, followed by the Genotypic data tab; or by right clicking on the Genotypic 

data folder in the QTL Data View, then selecting Add to data space. 
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If you have imported genotypic data from R/qtl or MapQTL formats, you can save the 

imported data in the Flapjack text file format via either Stats | QTLs (Linkage/Association) | 

Data Import/Export | Save Genotypic (Marker and Map) data or by clicking on the Save QTL 

data space icon ( ) on the QTL Data View and selecting the option Genotypic (marker and 

map) data files. 

 

2.1.2.5 Validation of genotype marker and map data 

Various checks are carried out to ensure the basic integrity of the marker and map data. 

These checks are: 

1. For inbred populations, that there are no errors in the parental alleles. For example, if 

neither a missing data code nor allele separator is used (i.e. only one allele supplied) 

an error results. 

2. For mapping populations, the marker scores have the correct number of alleles. 

3. For inbred populations, the marker scores have the correct number of alleles and only 

alleles specified in the parents or the missing data code are used. 

4. That there are no duplicate marker names. 

If any of these errors are found the marker and map data files will fail to load. 

The data are also checked for a mismatch between the markers in the two files. If there 

are more markers in the genotype file than the map file, only those common between the 

two files will be loaded. All other markers are ignored. However, if the map file contains 

more markers than the genotype file, the marker and map data will fail to load. 

 

 Genetic relationship data 

Genetic relationship data are used in association mapping analyses (Chapter 9) to indicate 

structure within the population. Within Genstat, this structure can either be estimated 

within the analysis (via eigenanalysis or by calculating a kinship matrix) or defined by an 

imported structure, either a kinship (or co-ancestry coefficient) matrix or a subpopulation 

grouping factor.  

Genetic relationship data can be loaded from files via either: 

 Stats | QTLs (Linkage/Association) | Data Import/Export | Load Genetic Relationship data; 

or, 

 by clicking on the Open QTL data file icon ( ) on the QTL Data View and selecting 

the option Genetic relationship data files.  
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Both routes open the Open Genetic Relationship Data files menu (Figure 2.14), and by 

default the data loaded is added into the QTL Data Space. 

 

 
Figure 2.14: Importing genetic relationship data; kinship matrix 

(AMP_Barley_Kmatrix.txt) and subpopulation structure (AMP_Barley_pheno.csv). 

 

The kinship matrix is a symmetric matrix with value 1 on the diagonal and co-ancestry 

coefficients (0 ≤ θ ≤ 1) between all pairs of genotypes elsewhere. This type of matrix can 

be imported from a Genstat spreadsheet file (which must contain the structure as a 

symmetric matrix sheet) or from a text file. The first row of the text file contains the 

names of the genotypes, and the following rows the low-diagonal values of the 

coefficients of co-ancestry matrix between genotypes, diagonal included (for an example, 

see Figure 2.15). The file name must be specified in the Kinship matrix section of the Open 

Genetic Relationship Data files menu (Figure 2.14). For importing from a text file, the matrix 

name must be provided (default m_kinship); this name is read directly from a 

spreadsheet file. Figure 2.14 shows the import of a kinship matrix for the MABDE barley 

association panel (see Section 1.3.4) from text file AMP_Barley_Kmatrix.txt. 
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Figure 2.15: Top left portion of the kinship matrix for the MABDE barley association panel 

(Section 1.3.4) from text file AMP_Barley_Kmatrix.txt. 

 

The subpopulation factor: defines subsets of genotypes based on either some known 

population substructure or using the results of clustering the genotypes based on either 

genotypic or phenotypic data. For example, program STRUCTURE can be used to infer 

subpopulation structure and assign individuals to groups (see Pritchard et al., 2000, and 

website http://pritchardlab.stanford.edu/structure.html). The grouping can be imported 

from a Genstat spreadsheet, or Excel and text file formats for use in association mapping. 

The file name containing the grouping must be specified in the Subpopulation group section 

of the Open Genetic Relationship Data files menu (Figure 2.14), with the sheet name 

specified if multiple sheets are present in a spreadsheet (or Excel) file. Genstat 

spreadsheet, Excel files, and text files should contain the data structures in columns. The 

order of the genotypes in this grouping must match the order of the genotypes in the 

phenotypic data. Figure 2.14 imports a grouping factor (group) for the MABDE barley 

association panel (see Section 1.3.4) from the phenotypic text file 

AMP_Barley_pheno.csv. 

Alternatively, genetic relationship data can be loaded directly into Genstat (e.g. using 

File | Open) and then transferred into the QTL Data Space by either: selecting the Add data 

in Genstat to QTL data space icon ( ) on the QTL Data View, followed by the Genotypic 

data tab; or by right clicking on the Genotypic data folder in the QTL Data View, then 

selecting Add to data space. Selection of Association mapping in the Type of population: box 

activates the Subpopulation groups: and Kinship matrix: boxes that can be used to add these 

structures to the QTL Data Space.  

 

 

MABDE_001 MABDE_003 MABDE_004 MABDE_005 MABDE_007 MABDE_008 MABDE_009

1

0.1793 1

0 0 1

0.115 0.1229 0 1

0.2899 0.3126 0 0.121 1

0.2946 0.1732 0 0.1869 0.3402 1

0.2831 0.3517 0 0.1505 0.9018 0.3428 1

0.1561 0.389 0 0.0775 0.2268 0.2795 0.2443

0.2807 0.3271 0 0.1311 0.3373 0.3169 0.3387

0 0 0 0.1237 0.0313 0.0232 0.0068

0 0 0 0.1173 0.0325 0.028 0.0079

http://pritchardlab.stanford.edu/structure.html
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2.2 QTL Data Space 

 

Data structures imported into the QTL Data Space (introduced in Section 1.2) are then 

available in the QTL Data View (Figure 1.3). Symbols indicate the types of the data 

structures: 

 factor 

 variate 

 text vector 

 pointer 

 symmetric matrix 

For more information on different types of data structures, see the Syntax and Data 

Management Guide (Chapter 2). You can move the cursor over the structure names to 

obtain tooltip descriptions of their properties. 

The QTL Data Space is a convenient way to manage data required for QTL analysis 

within Genstat. By default, Genstat will fill fields in the QTL menus using suitable 

structures from the QTL Data Space. You can also save a QTL Data Space and reload it 

later, ready to recommence analysis. 

The QTL Data Space can be saved as a .qds file either: via Stats | QTLs 

(Linkage/Association) | Data Import/Export | Save QTL Data Space; or by clicking on the Save 

QTL data space icon ( ) in the QTL Data View; or by right clicking anywhere in the QTL 

Data View and selecting Save data space from the drop-down menu. 

To (re-)load a QTL Data Space, you can use either: the Stats | QTLs (Linkage/Association) 

| Data Import/Export | Load QTL Data Space menu; or click on the Open QTL data file icon (

) in the QTL Data View and select QTL data space; or right click anywhere in the QTL 

Data View and select Load data space from the drop-down menu. 

To examine the values of structures in the QTL Data Space, right click on the group 

name (e.g. PhenoMeans) and select Create Spreadsheet from the drop-down menu. 

Genstat will open all structures in that group in spreadsheets, using separate sheets for 

structures of different lengths.  

To remove all data structures from the QTL Data Space click on the Delete data from 

QTL data space icon ( ) in the QTL Data View. An information box (Figure 2.16) will 

appear advising you to choose either: 
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 Delete, which removes the data from the QTL Data Space and deletes it from the 

Genstat Server, or 

 Remove, which removes the data from the QTL Data Space but retains it in the 

Genstat Server, or 

 Cancel, which takes no action. 

Alternatively to remove the data from the QTL Data Space (but retain it in the Genstat 

Server), right click in the QTL Data View and select Delete all from the drop down menu. 

To remove a single data structure from the QTL Data Space, select this structure in the 

QTL Data View and use the Delete key on the keyboard. Figure 2.16 will appear, and you 

can select Delete or Remove as appropriate. 

 

 
Figure 2.16: Options for deleting data from QTL Data Space. 

 

It is also possible to save the contents of the QTL Data Space (data structures and results 

of analysis) into a Flapjack project file (Milne et al., 2010). You can do this using either: 

the Stats | QTLs (Linkage/Association) | Data Import/Export | Save Flapjack Project file menu; 

or click on the Save and open in Flapjack icon ( ) in the QTL Data View. Both routes will 

open the Export to Flapjack project file menu, with options for creating a Flapjack project 

file displayed on different tabbed pages as follows:   

 Flapjack project tab - options for saving the Flapjack project file.  

 Genotypic data tab - options for specifying the genotypic (marker and map) data to 

be included in the Flapjack project file.  

 Trait data tab - options for specifying the trait data to be included in the Flapjack 

project file.  

 QTL data tab - options for specifying the results from a QTL analysis to be included 

in the Flapjack project file. 

 Export files tab - options for specifying the files to form the Flapjack project file. 
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2.3 Data manipulation 

 

In QTL experiments, it is quite common to either obtain phenotypic data for only a subset 

of a mapping population or to obtain marker information for only a subset of the 

individual genotypes. This can lead to a mismatch between the genotypes present in the 

phenotypic and genotypic data sets, and/or between the marker scores present for the 

genotypes and the markers present in the map. In addition, there may be a discrepancy 

between the ordering of the genotypes between the phenotypic means and genotypic data 

sets, which must be recognized and accommodated in order to achieve a valid analysis. 

In this section, we describe the checking and subsetting facilities available from the Data 

Manipulation menu that can be used to ensure the correct data sets (or subsets) are used for 

QTL detection. This menu can be accessed either via Stats | QTLs (Linkage/Association) | 

Data Manipulation; or, from the Manipulate button on the QTL Data View. We first describe 

the Compatibility Check menu that is used to check consistency across the phenotypic and 

genotypic data sets (Section 2.3.1), and exclude genotypes or markers with poor quality. 

Once a coherent data set has been established, then further subsetting may be desirable, 

and menus for subsetting are described in Section 2.3.2. 

 

 Compatibility across phenotypic and genotypic data sets 

The Compatibility Check menu is designed to be used before QTL analysis and performs a 

range of checks required to obtain a coherent combined data set. Variables from the 

genotypic and phenotypic data sets are used as input, and the contents of the QTL Data 

Space will be used to initialize the menu. For each input variable, a new name must be 

provided for the corresponding (possibly) reduced output variable. By default, these 

output variables will replace the original variables in the QTL Data Space; this can be 

changed using the check box on the Compatibility Check Options sub-menu (opened by 

clicking on the Options button).  

Within the genotypic data set, the procedure will check for, and exclude, any markers 

with <50% scores present or with <5% frequency of any one allele. These thresholds can 

be changed using the Compatibility Check Options settings Percentage of missing values 

allowed in markers: and Extreme allele percentage allowed for marker (between 0 and 5):, 

respectively. Setting these options to zero will mean that no markers are excluded on the 

basis of missing values or allele frequency. 

Labels of the genotype factor (as part of the phenotypic data set) will be checked 

against the set of Genotype labels (part of the genotypic data set). The procedure will 

exclude any genotypes not present in both data sets. In addition, genotypes with scores 
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present for <50% of the marker set will be excluded. This threshold can also be changed 

using the Compatibility Check Options setting Percentage of missing values allowed for 

genotype:. Setting this option to zero will mean that no genotypes are excluded on the 

basis of missing marker scores. Finally, the new genotypic data variables will be 

reordered so that the Genotype labels match the ordering of the labels of the Genotype 

factor, to ensure that the two data sets can be combined without error. 

 

 Subsetting 

Additional subsetting of phenotypic or genotypic variables may also be required, for 

example, to restrict QTL analysis to a single chromosome. Within the QTL Data Space, 

subsetting can be reversed and/or revised, if necessary, as backups of the full data sets are 

stored. The full data can be restored by selecting the Stats | QTLs (Linkage/Association) | 

Data Manipulation | Remove Subsetting menu item, or by using the Manipulate button on the 

QTL Data View. 

 

2.3.2.1 Subsetting phenotypic and genotypic data by genotypes 

Subsetting by genotypes can be used to remove parents of a population from the trait 

means and genotypic data or to remove genotypes with unreliable marker scores or trait 

means. Subsetting by genotypes should only be done once compatibility of the phenotypic 

and genotypic data sets has been established (Section 2.3.1). The Subset Phenotypic and 

Genotypic Data by Genotypes window is accessed from the Data Manipulation menu and 

gives a list of all genotypes in the data set (Figure 2.17).  

All genotypes to be retained in the subset should be copied to the right-hand pane. The 

Select All button allows the full set of genotype names to be copied across; this can be 

useful if only a few genotypes are to be excluded. Checking the box Delete genetic 

predictors and associated information will delete any genetic predictors in the QTL Data 

Space (i.e. genetic covariates associated with marker information, see Section 6.1.1). 

These can be recalculated prior to QTL analysis using only the genotypes retained in the 

subset (see Chapter 6). 

After subsetting by genotypes, the trait means and genotypic data in the QTL Data 

Space will only contain units corresponding to the selected genotypes. The number of 

genotypes in the subset is shown by placing the mouse cursor over the genotype factor 

name (default genotype) in the PhenoMeans section (as Nlevels) or over the genotype 

labels (default m_id) in the Genotypic section (as Nvals) of the QTL Data View.  
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Figure 2.17: Subset Phenotypic and Genotypic Data by Genotypes window.  

 

2.3.2.2 Subsetting the genotypic data by markers 

Subsetting by markers can be used investigate a subset of the genome (e.g. one linkage 

group) or to exclude markers of poor quality. The Subset Genotypic Data by Markers 

window is accessed from the Data Manipulation menu and gives a list of all linkage groups 

and markers in the genotypic data set (Figure 2.18).  

The set of markers to be included can be made by linkage group and/or by individual 

markers. Moving linkage groups into/out of the selected subset will cause all of the 

markers in that linkage group to be moved accordingly. Checking the box Delete genetic 

predictors and associated information will delete any genetic predictors that have been stored 

within the QTL Data Space. These can be recalculated prior to QTL analysis using only 

the markers retained in the subset (see Chapter 6). 

The genotypic data variables in the QTL Data Space (linkage groups, marker scores, 

marker names and marker positions) will then only contain units corresponding to the 

selected markers. The number of linkage groups (Nlevels) and markers (Nvals) in the 

subset will be shown if you place the mouse cursor over the linkage group factor name 

(default m_linkage) found in the Genotypic section in the QTL Data View. 
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Figure 2.18: Subset Genotypic Data by Markers window. 

 

2.4 Data exploration  

 

Checking and exploration of data before analysis allows unusual observations, such as 

outliers or typographical errors, to be identified and (where possible) corrected. The QTL 

menu has a number of exploratory tools (summary statistics and graphical displays) that 

enable you to explore both phenotypic and genotypic data before embarking on QTL 

analysis. You can navigate to the data exploration tools via the menu Stats | QTLs 

(Linkage/Association) | Data Exploration or by using the Explore button in the QTL Data View. 

 

 Exploration of phenotypic data 

Exploration of the phenotypic data sets is enabled by selecting the Phenotypic Data option 

under the Data Exploration menu. Here we will only describe the tools for producing 

summary statistics; the AMMI and GGE tools for exploration of multi-environment trials 

are discussed in Chapter 4. 
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2.4.1.1 Summary statistics by environment 

The Summary Statistics menu allows you to calculate summary statistics for the selected 

trait within each environment via the Stats | QTLs (Linkage/Association) | Data Exploration | 

Phenotypic Data | Summary Statistics Single Environment menu. The summary statistics can 

be calculated on either the raw plot (unit) data or the trait means, depending on the trait 

variates selected. To calculate the summary statistics for each environment, specify the 

environment factor that corresponds to your trait variate (i.e. relating to either raw data 

or trait means for each genotype) in the By Groups: box. The Display settings are used to 

select the summary statistics calculated for each environment, and the Graphics settings 

can be used to display the distribution of the data: the settings Histogram and Boxplot may 

be helpful in this context. For the CIMMYT maize trials (Section 1.3.2), Figure 2.19 

shows histograms of yield (trait mean yld) from each environment: there is a separate 

histogram for each environment, labelled at the top of each plot. This shows a clear 

change in both the mean and variation of yields across the eight environments. 

 

 

Figure 2.19: Histograms showing distribution of trait mean yld within each environment of the 

CIMMYT maize trials data set (Section 1.3.2). 
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Figure 2.20 shows boxplots of the same data set, with the distributions for each 

environment laid out side by side. The differences in mean and variance between 

environments are still clear, but the boxplots also identify a number of outlying values 

within each environment that were not visible in the histograms. These observations 

should be checked for errors before analysis.  

 

 
Figure 2.20: Boxplot showing distribution of yld within each environment of the CIMMYT 

maize trials data set. 

 

2.4.1.2 Summary statistics between environments 

The Summary Statistics Between Environments menu allows you to explore correlations 

between measurements on a single trait made in different environments. It is accessed via 

Stats | QTLs (Linkage/Association) | Data Exploration | Phenotypic Data | Summary Statistics 

Multiple Environments. Calculations can be done using either raw data or trait means. By 

default, Genstat will fill the menu using structures from the PhenoMeans section of the 

QTL Data Space, but these can be replaced by structures from the Phenotypic raw data 

folder if required. The form of the menu is shown in Figure 2.21.  
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Figure 2.21: Summary Statistics Between Environments menu. 

 

It is necessary to select the environments for which correlations are to be calculated or 

plotted, then choose which output to display. If the option Correlations is chosen, then an 

across-environment correlation matrix is printed in the Output window. If the option 

Correlation plot is chosen, then the correlation matrix values are displayed graphically, as 

shown in Figure 2.22, as a shade plot of the correlation matrix, coloured by spectrum 

from blue (correlation = -1.0) to red (correlation = +1.0). The environments are sorted 

alphabetically, coded by integers and these codes are used as the tick labels on the plot. 

The legend in the top right corner of the plot shows the correspondence between code and 

environment name. The option Scatter plot matrix produces a scatter plot for each pair of 

environments. This is best restricted to a small number of environments, otherwise the 

individual plots become too small to be useful. Figure 2.23 shows a scatter plot matrix 

for the five environments used in 1992 and 1994 for the CIMMYT maize trials. These 

plots provide a useful way to identify genotypes that behave differently between 

environments.  
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Figure 2.22: Correlation plot of yld across the 8 CIMMYT maize trial environments. 

 

 

Figure 2.23: Scatter plot matrix of yld from the CIMMYT maize trials in 1992 and 1994. 
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2.4.1.3 Summary statistics between traits 

The Summary Statistics Between Traits menu allows you to explore correlations between 

measurements on several traits made in a single environment, or measurements on two 

traits average over multiple environments. It is accessed via Stats | QTLs 

(Linkage/Association) | Data Exploration | Phenotypic Data | Summary Statistics Multi-traits. 

Calculations can be done using either raw data or trait means. By default, Genstat will fill 

the menu using structures from the PhenoMeans section of the QTL Data Space, but these 

can be replaced by structures from the Phenotypic raw data section if required.  

It is necessary to select the traits for which correlations are to be calculated or plotted, 

and the environment for which calculations are to be formed, under Calculate statistics for:. 

The default setting of average will average the traits over all environments and then derive 

correlations from these averaged values. You can then choose which output to display. If 

the option Correlations is chosen, then an across-trait correlation matrix is printed in the 

Output window. If the option Correlation plot is chosen, then the correlation matrix is 

displayed graphically, similarly to Figure 2.22, but in this case the traits are sorted 

alphabetically. The option Scatter plot matrix produces a scatter plot for each pair of traits, 

similarly to Figure 2.23. The option Biplot produces a plot of the first two principal 

components calculated from the across-trait correlation matrix; this is discussed further 

in Chapter 4. 

To explore the correlations between traits measured within a single environment, 

specify the environment of interest in the Calculate statistics for: field. 

 

 Exploration of genotypic data 

Exploration of the genotypic data sets is enabled by selecting the Genotypic Data option 

under the Data Exploration menu. The tools for exploration data enable you to investigate 

the quality of the genotypic data, including understanding the genome coverage, the 

proportion and patterns of missing marker data, and the segregation ratios. 

 

2.4.2.1 Display a genetic map 

The Display Genetic Map menu produces a simple line plot of the genetic map that allows 

you to view the molecular marker density and coverage across the genome. If structures 

containing the allocation to linkage groups (or chromosomes), marker positions and 

marker names have been loaded into the QTL Data Space, then the menu will be populated 

automatically (Figure 2.24). 
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Figure 2.24: Display Genetic Map menu. 

 

The Orientation used for the linkage groups (or chromosomes) can be Vertical (default, 

with linkage groups running down the page) or Horizontal (linkage groups running across 

the page). You can Subset linkage groups (or chromosomes) by supplying a comma 

separated list of the group number(s) or labels, e.g. 1, 2, 3 or A1, A2, A3, or by providing 

a variate or text structure containing the required group numbers or labels. The plot is 

displayed in the Genstat Graphics Viewer and the markers are labelled by tooltips using 

their names. To identify a marker select the Data Info tool ( ) and then click on the marker 

of interest (see Figure 2.25).  
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Figure 2.25: Using the Data Info tool to identify a marker in a genetic map. 

 

2.4.2.2 Genotype data plots 

Genotype data plots are simple graphical displays that assist you in visualising the marker 

data. The Genotype Data Plots menu automatically fills with structures from the QTL Data 

Space, if these are available (Figure 2.26).  

Selecting All genotype scores (default) produces a shade plot of the genotype (rows) by 

marker (columns) matrix of marker scores, using different colours for each combination 

of parental alleles. Selecting Missing genotype scores produces a shade plot that highlights 

the missing marker scores, using different grey shades to differentiate between fully and 

partially missing marker information. In both plots, the default colour scheme can be 

changed via the Colours button. A row (i.e. genotype) subset of the matrix can be obtained 

by specifying a range of genotype numbers, using the Lower genotype: and Upper genotype: 
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boxes. A column (i.e. marker) subset can be specified by using the Subset linkage groups 

to supply a comma separated list of the group number(s) or labels, e.g. 1, 2, 3 or A1, A2, 

A3, or by providing a variate or text structure containing the required group numbers or 

labels. 

 

 

Figure 2.26: Genotype Data Plots menu. Here, for the CIMMYT maize trials, a plot for genotypes 

1-50 at linkage groups 1-4 is requested. 

 

Figure 2.27 gives the genotype data plot for genotypes 1-50 of the F2 CIMMYT maize 

population on linkage groups 1-4. In general, within linkage groups, we expect to see runs 

of reasonable length of the same colour, with occasional changes. There are clearly a few 

markers in linkage groups 1-4 with a large proportion of missing values (indicated by 

black squares).  
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Figure 2.27: Genotype data plot, across linkage groups 1-4, for genotypes 1-50 of the CIMMYT 

maize trials. 

 

2.4.2.3 Summary statistics for markers 

The Summary Statistics for Markers menu produces summary information on the marker 

scores and genetic map. The data fields in the menu are automatically filled using 

structures from the QTL Data Space, if these are available (Figure 2.28). 

 



2.4  Data exploration 

45 

 

 

Figure 2.28: Summary Statistics for Markers menu with Options window. Here, summary 

statistics for the CIMMYT maize trials marker data is requested. 

 

The display options, controlled by the Display section of the Summary Statistics for 

Markers Options menu (Figure 2.28), can be used to give a summary of the genetic map 

(setting Summary), a report on the pattern of missing values (setting Missing values) and 

an assessment of allele frequencies (setting Frequencies).  

The genetic map summary reports the population type, the numbers of markers and 

genotypes, and parental names. Also reported, for each linkage group and the whole 

genome, are the number of markers, the total length and the median and 95th percentile 

of the inter-marker distances.  

 
Summary 

------- 

 

              Population: F2 

     Number of genotypes: 211 

       Number of markers: 122 

 

The labels of the parents are: 

     Parent1 

     Parent2 

 

 

Chromosome     Length  Number of  Median distance  95% percentile 

                         markers  between markers    of distances 
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         1      266.0         19             10.1            39.2 

         2      198.5         15             11.4            36.5 

         3      225.0         10             22.5            72.8 

         4      167.5         11             12.6            48.3 

         5      178.5         12             15.3            33.8 

         6      152.5         11             13.2            33.7 

         7      108.8         10             11.6            20.9 

         8      187.0         11             14.1            43.1 

         9      135.6         13             10.9            24.6 

        10      138.0         10             14.3            29.5 

 

    Genome     1757.4        122             12.8            38.5 

 

A simple line plot of the genetic map (as described in Section 2.4.2.1) can be obtained 

by checking the Linkage map box under Graphics on the Summary Statistics for Markers 

Options menu (Figure 2.28). 

The report on missing marker scores displays the total number of missing scores, the 

number of markers and genotypes with missing scores, and details of the markers and 

genotypes with >10% missing scores. The default threshold of 10% can be changed in 

either case through the Summary Statistics for Markers Options menu (Figure 2.28). A scatter 

plot of the number of missing scores against genome position and a shade plot of the 

missing value pattern (as described in Section 2.4.2.2) can be obtained by checking the 

Missing Values setting under Graphics on the Summary Statistics for Markers Options menu. 

 
Missing values 

-------------- 

 

 

There are 603 scores missing. This is 2.342% of the 25742 scores. 

 

 

There are 86 markers with missing values. This is 70.49% of the 122 markers. 

 

The 4 markers with more than 10% missing values over the 211 genotypes are: 

 

                                   Number of      Percentage 

Marker Chromosome   Position  missing values  missing values 

  L055          4       76.7              27            12.8 

  L080          4      145.0              30            14.2 

  L115          6       45.2              35            16.6 

  L127          8      106.0              32            15.2 

 

 

There are 157 genotypes with missing values. This is 74.41% of the 211 

genotypes. 
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The 8 genotypes with more than 10% missing values over the 122 markers are: 

 

               Number of      Percentage 

Genotype  missing values  missing values 

    G020              20            16.4 

    G023              14            11.5 

    G032              20            16.4 

    G063              21            17.2 

    G075              17            13.9 

    G121              13            10.7 

    G128              14            11.5 

    G133              16            13.1 

 

The behaviour of the Frequencies option depends on the population type. For bi-

parental mapping populations, a summary of the observed allele frequency (segregation 

ratio) is printed out for each marker, and a chi-square test is used to compare the observed 

frequencies with those expected for the population type. This test can be used to detect 

both systematic segregation distortion and suspect markers. The observed probability, P, 

(Prob.) under the null hypothesis (segregation as expected) is printed, and the markers 

are ordered by this probability value, with the lowest (most significant) first. This ordering 

can be changed using the Sort frequency table by probabilities section of the Summary 

Statistics for Markers Options menu.  

 
Frequencies of markers (sorted on probabilities) with probability < 0.1 

----------------------------------------------------------------------- 

 

 

Marker  Chromosome    1/1    1/2    2/2    1/-    2/-    -/-   Prob. 

  L031           9     45     94     71      0      0      1   0.013 

  L115           6     35     82     59      0      0     35   0.025 

  L007           4     45    123     41      0      0      2   0.035 

  L035           3     58    114     36      0      0      3   0.037 

  L094           1     36    116     55      0      0      4   0.039 

  L087           8      0      0     38    165      0      8   0.039 

  L098           6     40      0      0      0    171      0   0.043 

  L016          10     37    116     58      0      0      0   0.043 

  L020           3     59    109     36      0      0      7   0.046 

  L100           3      0      0     40    170      0      1   0.046 

  L078           7     68     98     45      0      0      0   0.048 

  L108           5     40      0      0      0    169      2   0.050 

  L061          10     37    116     54      0      0      4   0.055 

  L125           5      0      0     64    147      0      0   0.074 

  L104           6     41    106     64      0      0      0   0.081 

  L024           9     36    103     57      0      0     15   0.082 

  L070           1     39    117     50      0      0      5   0.083 
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A scatter plot of -log10(P) against genome position (Figure 2.29) can be obtained by 

checking the Chi-square probabilities box under the Graphics section of the Summary 

Statistics for Markers Options menu. Large values of -log10(P) (where 1.3 is equivalent to 

P=0.05 and 2.0 is equivalent to P=0.01) may indicate the presence of segregation 

distortion. 

 

 

Figure 2.29: Plot of -log10(P) from the chi-square test for segregation distortion against genome 

position for the F2 maize population used in the CIMMYT trials. 

  

For association mapping populations, a summary of the markers with rare alleles is 

also printed, where a rare allele is present for <10% of the genotypes. This threshold can 

be changed using the Extreme allele percentage for markers: box on the Summary Statistics 
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for Markers Options menu. The frequency of the rarest allele at each marker can be plotted 

against genome position by checking the Frequencies box under the Graphics section of 

the Summary Statistics for Markers Options menu. 

All of this information can be obtained for a subset of the linkage groups (or 

chromosomes) by supplying a comma separated list of the group number(s) or labels, e.g. 

1, 2, 3 or A1, A2, A3, or by providing a variate or text structure containing the required 

group numbers or labels in the Subset linkage groups: box of the Summary Statistics for 

Markers menu (Figure 2.28). 
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3 Preliminary phenotypic analysis: producing trait 

means per genotype from trial data 

 

QTL analysis in Genstat requires a single value for each genotype (or line) in each 

environment for each trait (known as “trait means”), rather than the raw data values from 

replicated trials. It may therefore be necessary to perform an appropriate preliminary 

analysis to acquire trait means. This will usually involve analysing the full experiment 

according to the experimental design, and saving the predicted means for those genotypes 

to be included in the QTL analysis. The Preliminary Single Environment Analysis (PSEA) 

menu helps you to produce trait means from experimental data. This menu is not designed 

for a full analysis of an experiment, which should include model selection and storage of 

results. This should be done beforehand, for example by using the appropriate ANOVA 

or mixed model (REML). The PSEA menu takes a model that you have already 

established, and uses it to obtain suitable predicted trait means for QTL analysis. 

In this chapter, we first illustrate the use of the PSEA menu and describe the underlying 

methods, then take a step back and provide some guidance on the process of model 

selection that should precede use of this menu. We first perform a standard single trial 

analysis (Section 3.1) to produce and save trait means and unit errors (i.e. weights) for 

use in subsequent G×E and QTL analyses (Section 3.2). We describe how to calculate the 

heritability of a trial (Section 3.3), and how to deal with genotypes that will not be used 

in the QTL analysis (Section 3.4). We compare different designs enabled on the PSEA 

menu (Section 3.5) and, finally, outline the process of model selection (Section 3.6). 

 

In this chapter you will learn: 

 how to use the Preliminary Single Environment Analysis menu (Section 3.1) 

 how to generate and save the table of means and unit errors for subsequent G×E 

and QTL analyses (Section 3.2) 

 how to calculate the heritability for the trial (Section 3.3) 

 how to structure the analysis when not all genotypes are to be used in QTL 

analysis, e.g. when control or parent lines are present (Section 3.4) 

 how to select models working from simple experimental designs to more 

complex modelling of spatial variability (Sections 3.5 and 3.6) 

 how to produce and interpret variograms (Section 3.6) 
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3.1 Preliminary single environment analysis 

 

We will first illustrate the process of obtaining trait means and unit errors using the raw 

plot yields from the CIMMYT spring wheat trials data set (introduced in Section 1.3.3), 

before discussing some more detailed features of the menu in the following sections. This 

data set contains raw plot yield data for a recombinant inbred line population, grown in 

alpha-lattice designs with two replicates in four environments (factor Env) by the 

International Centre for Maize and Wheat Improvement (CIMMYT). These trials tested 

169 lines of spring wheat (factor Genotype). The design consists of two replicates (factor 

Rep), each containing 13 sub-blocks (factor Subblock) with 13 plots. The field layout 

for trial HEAT05 is shown in Figure 3.1. The first 13 rows are the first replicate, and rows 

14-26 are the second replicate. Each row within each replicate is a sub-block. Import the 

phenotypic data, held in file SB_yield.csv, as described in Section 2.1.1.1. 

 

 

Figure 3.1: Field layout of HEAT05 trial. 
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We will first do a design-based analysis of the HEAT05 trial. The Preliminary Single 

Environment Analysis (PSEA) window can be accessed from either: 

 Stats | QTLs (Linkage/Association) | Phenotypic Analysis | Preliminary Single Environment 

Analysis; or, 

 in the QTL Data View (Section 1.2) using shortcut Phenotypic analysis | Preliminary 

Single Environment Analysis (see Figure 3.2).  

 

 

Figure 3.2: Accessing the PSEA menu from the QTL Data View. 

 

For this example, select Incomplete Block Design from the Design: drop-down menu 

(there are a number of Design: options available that we will discuss in Section 3.5) and 

HEAT05 from the Environment: drop-down menu. Next select yield as the trait to be 

analysed by clicking in the Data: field and then double-clicking on yield from the 

Available Data: field. Next select Genotype in the Genotypes: field, keep the default option 

of All genotypes in QTL analysis (the use of Extra genotypes present is described in Section 

3.4). Specify the incomplete block model in Blocks: as Rep/Subblock using the Available 

Data: and Operators: fields (Figure 3.3). 
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Figure 3.3: Preliminary Single Environment Analysis window, for Environment HEAT05 from the 

SB_yield.csv data set. 

 

The Preliminary Single Environment Analysis procedure performs two mixed model 

analyses: the first (Step 1) where the Genotype factor is fitted as a random term and the 

second (Step 2) where the Genotype factor is fitted as a fixed term: all other terms are 

as specified by the user in the menu. An overview of linear mixed models is given with 

some background theory in Chapter 10. The Step 1 model is used to obtain estimates of 

variance parameters. By default, these variance parameters are then used in the Step 2 

model when the Genotype factor is fitted as a fixed term. The rationale for this process 

is that we would prefer to fit Genotype as a random term, as this avoids selection bias 

and results in better estimates of the variance parameters (Smith et al., 2001), particularly 

for unreplicated designs with check plots, including augmented designs. However, the 

shrinkage associated with predictions of random effects (Section 10.5) is undesirable 

when predictions are to be carried forward to a second stage analysis (Smith et al., 2001). 

For this reason, we use a compromise: we set Genotype as a fixed term in order to obtain 

unbiased estimates but use variance parameters estimated from the model with Genotype 
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fitted as random. It is possible to override this process and re-estimate the variance 

parameters in the second step (Genotype fixed) by checking Re-estimate Variance 

Parameters under the Analysis of Phenotypic Data Options menu (see Figure 3.4). 

The default output from this process is a model summary, estimates of variance 

parameters and Wald tests (Section 10.6) for both steps. It is also possible to obtain an 

estimate of heritability for the trial from the Step 1 model, with Genotype fitted as 

random, by checking the Heritability box under Display on the Analysis of Phenotypic Data 

Options menu (Figure 3.4). This calculation is described in Section 3.3.  

 

 

Figure 3.4: PSEA options. 

 

Clicking on OK on the Analysis of Phenotypic Data Options menu returns focus to the 

PSEA menu, and clicking Run produces the following output for the HEAT05 trial. Genstat 

commands have been omitted from the output, and bold font has been used to highlight 

the Genotype factor in the models. 

 



3  Preliminary phenotypic analysis: producing trait means per genotype from trial data 

56 

 

REML variance components analysis 

================================= 

 

Response variate: yield_HEAT05 

Fixed model:      Constant 

Random model:     Genotype_HEAT05 + Rep_HEAT05 + Rep_HEAT05.Subblock_HEAT05 

Number of units:   338 

 

Residual term has been added to model 

 

Sparse algorithm with AI optimisation 

 

 

Estimated variance components 

----------------------------- 

 

Random term              component        s.e. 

Genotype_HEAT05             1362.9       176.4 

Rep_HEAT05                  1216.0      1742.7 

Rep_HEAT05.Subblock_HEAT05 

                             178.3        68.5 

 

 

Residual variance model 

----------------------- 

 

Term                         Model(order)  Parameter        Estimate      s.e. 

Residual                     Identity      Sigma2              429.4      50.4 

 

 

Deviance: -2*Log-Likelihood 

--------------------------- 

 

                   Deviance   d.f. 

                    2760.76   333 

 

Note: deviance omits constants which depend on fixed model fitted. 

 

 

       Akaike information coefficient     2768.76 

Schwarz Bayes information coefficient     2784.04 

 

Note: omits constants, (n-p)log(2pi) - log(det(X'X)), that depend only on the 

fixed model. 

 

 

Heritability:       0.8528 

 

 

1406.......................................................................... 
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REML variance components analysis 

================================= 

 

Response variate:  yield_HEAT05 

Fixed model:       Constant + Genotype_HEAT05 

Random model:      Rep_HEAT05 + Rep_HEAT05.Subblock_HEAT05 

Number of units:   338 

 

Residual term has been added to model 

 

Sparse algorithm with AI optimisation 

 

 

Estimated variance components 

----------------------------- 

 

Random term               component        s.e. 

Rep_HEAT05                   1214.9       fixed 

Rep_HEAT05.Subblock_HEAT05 

                              178.1       fixed 

 

 

Residual variance model 

----------------------- 

 

Term                         Model(order)  Parameter        Estimate      s.e. 

Residual                     Identity      Sigma2              429.0      46.7 

 

 

Deviance: -2*Log-Likelihood 

--------------------------- 

 

                   Deviance   d.f. 

                    1348.11   168 

 

Note: deviance omits constants which depend on fixed model fitted. 

 

 

Tests for fixed effects 

----------------------- 

 

Sequentially adding terms to fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

Genotype_HEAT05                  1167.88     168          6.95   169.0  <0.001 

 

Dropping individual terms from full fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

Genotype_HEAT05                  1167.88     168          6.95   169.0  <0.001 
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* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated 

using algebraic derivatives ignoring fixed/boundary/singular variance 

parameters. 

 

 

 

       Akaike information coefficient     1350.11 

Schwarz Bayes information coefficient     1353.24 

 

Note: omits constants, (n-p)log(2pi) - log(det(X'X)), that depend only on the 

fixed model. 

 

There are several things to note here. Because the data set contains yields for several 

environments, the data has been subsetted to create new structures corresponding to the 

environment to be analysed. The names of these new structures are constructed by 

appending the environment name to the ends of the original structure names. Thus 

yield_HEAT05 indicates that this variate contains yield values for trial HEAT05 only. 

The model summary indicates the terms that have been fitted. In the first model, the 

Genotype_HEAT05 factor is fitted as a random term, with the terms corresponding to 

the blocking structure for trial HEAT05 (Rep_HEAT05 and 

Rep_HEAT05.Subblock_HEAT05) also fitted as random terms. An overall constant 

term (Constant) is automatically added into the fixed model. The estimated variance 

components are printed after the model summary. In the first model, it is clear that 

genotypes account for a substantial proportion of the variation. This is quantified by the 

estimate of heritability as 0.85 - this quantity is discussed further in Section 3.3. In the 

second model, the factor Genotype_HEAT05 has been switched from the random to the 

fixed model, and appears in the table of tests for fixed terms (see Section 10.6). Again, 

the approximate F-test suggests there is very strong evidence for differences among the 

set of genotypes.  

Before proceeding, it is sensible to check whether the assumptions underlying the 

analysis have been met (see Section 10.7) by checking the residuals. Residual plots can 

be generated by using the Further Output button following analysis, which generates the 

Single Environment REML Analysis Further Output window shown in Figure 3.5. Clicking on 

Residual Plots brings up the window on the right-hand side of Figure 3.5.  
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Figure 3.5: Further output and residual plot menu options for PSEA. 

 

The default output is a composite set of residual plots, based on the first step analysis, 

with Genotype fitted as a random term. Residuals from the second step analysis 

(Genotype fixed), as shown in Figure 3.6, are obtained by selecting Genotype fixed model 

on the Single Environment REML Analysis Further Output window (left-hand side of Figure 

3.5). There are several different definitions of residuals from the linear mixed model (see 

Section 10.7). The Method for residuals drop-down allows five choices for these plots: 

residuals may be constructed from all random terms (setting Combine all random terms), 

corresponding to the marginal residuals of Section 10.7. Alternatively, residuals may be 

constructed from the final random term only (the model deviations) corresponding to the 

conditional residuals of Section 10.7 (Final random term only). Standardized marginal and 

conditional residuals can be constructed by setting the Method for residuals to Standardized 

residuals from all random terms or Standardized residuals from final random term only, 

respectively. Marginal residuals can also be constructed from all random terms except 

spline terms (Combine all random terms, excluding spline terms). 

In Figure 3.6 conditional residuals are plotted setting Method for residuals to Final 

random term only. As described in Section 10.7, for this model, the residuals should be 

consistent with an independent sample from a Normal distribution with constant variance. 

In Figure 3.6, the histogram of residuals is reasonably symmetric, there is no evidence of 

variance changing in relation to the fitted values and the Normal plots are reasonably 

close to a straight line, giving no evidence of departures from the model assumptions of 

normality and constant variance.  
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Figure 3.6: Conditional residual plots for HEAT05 trial with Genotype fitted as fixed term. 

 

However, these residual plots cannot give information about dependence between 

residuals. To assess independence we can look at plots of residuals in field layout (i.e. 

shade or contour plots), as well as the variograms (described in Section 3.6). Figure 3.7 

shows specification of a shade plot.  

Shade plots for both marginal and conditional residuals (Method for residuals settings 

Combine all random terms and Final random term only, respectively) for trial HEAT05, based 

on the second step analysis (Genotype fixed) are shown in Figure 8. The left-hand plot, 

based on the combined residuals, shows the large effect of replicate, as residuals in the 

first replicate (rows 1-13) are clearly smaller than those in the second replicate (rows 14-

26). Once the replicate and sub-block effects have been removed (right-hand plot), some 

left to right trend is visible across the columns.  
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Figure 3.7: Specifying a shade plot of residuals in field layout. 

 

 
Figure 3.8: Shade plots of residuals in field layout for HEAT05 trial.  
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In practice, we might investigate the residuals more closely as part of the trial analysis, 

using the exploratory techniques illustrated in Section 3.6 prior to entering the QTL 

system. 

 

3.2 Generating trait means 

 

Once a satisfactory model has been fitted, the trait means are predicted from the second 

step performed by the Preliminary Single Environment Analysis menu, that is, when 

Genotype is fitted as a fixed term. These means are called the Best Linear Unbiased 

Estimates (BLUEs) (see Section 10.6). The BLUEs can be saved using the Save Test Line 

Means button (Figure 3.3). The Save Test Line Means window specifies the data structures 

to be saved (Figure 3.9). 

The Environment label: is used to identify the results from an analysis for a particular 

environment (e.g. HEAT05).  

 

 

Figure 3.9: Save Test Line Means window. 

 

Default names are suggested for the structures to be saved (Figure 3.9). These 

structures correspond to the trait means for each genotype (or line) and so have a different 
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length to the original variables which relate to the raw data - new names are therefore 

required to prevent the original variables being overwritten. The default names generated 

use the trait name as a suffix (e.g. _trait). The quantities saved are the environment 

and genotype labels (default names env_trait and mg_trait), the predicted means 

and their standard errors (m_trait and se_trait) and a set of unit errors (ue_trait).  

The unit errors (ue_trait) are a measure of precision of the trait means suitable for 

use as weights in G×E and QTL×E analyses, and their inclusion can improve genotype 

predictions when trials within a data set have different levels of precision (Welham et al., 

2010; Möhring & Piepho, 2009; see also Section 4.3). The unit errors are derived from 

the estimated variance-covariance matrix of genotype predictions from the Step 2 model 

(Genotype fitted as fixed), denoted Σ̂. For n genotypes, let Π = (𝜋1, … , 𝜋𝑛)′ denote a 

vector of weights obtained by taking the diagonal elements of Σ ̂−1, i.e. the diagonal of 

the inverse of this variance-covariance matrix. The unit errors are calculated as the inverse 

of these weights, i.e. 1/πi for i=1…n, as suggested by Smith et al. (2001).  

The structures generated can be saved in two different ways: as a new set of structures 

(Create new) or used to update an existing set in the QTL Data Space (Combine with existing): 

 Create new will overwrite any other structures of the same name. It can be used to 

create the structures for the first trial analysed in a multi-environment data set or to 

re-start the generation of the means. 

 Combine with existing will append the new values onto the named structures; or, if 

the named structures do not exist, it will create the new structures. In this way, a 

composite data set (consisting of trait means, SEs, unit errors and factors giving 

genotype and environment labels) can be formed for G×E and QTL×E analysis 

from repeated use of the Preliminary Single Environment Analysis menu, with Save Test 

Line Means | Combine with existing to build up a set of trait means for all environments 

in the data set.  

By default these new variables will be added into the QTL Data Space.  

Some caution is required if means are generated for more than one trait (as required 

for multi-trait analysis), as the QTL Data Space can currently only hold one indexing factor 

for both genotypes and environments. If some traits are measured in different subsets of 

environments, then different indexing factors are required - these can be constructed using 

the Save Test Line Means menu and will be stored within Genstat, but only the last set 

generated will be present in the QTL Data Space and appear automatically on menus. 
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3.3 Calculating heritability 

 

Heritability is commonly used by plant breeders to quantify the degree of genetic 

determination of the trait of interest, and in the simplest case can be interpreted as the 

proportion of observed variation that can be attributed to genetic differences (see Kearsey 

& Pooni, 1996). Heritability (denoted h2) ranges from 0 (no genetic determination of the 

trait) to 1 (total genetic determination with no measurement error). Heritability depends 

on both the trait measured and the precision of the trial. In addition, there are many 

different definitions of heritability, depending on whether it relates to total genetic 

variation (broad-sense) or additive genetic effects (narrow-sense) or to genotype 

predictions (mean line) or individual observations. Because heritability relates to genetic 

variation, it can only be obtained when Genotype is fitted as random (i.e. the first 

analysis performed by the PSEA menu). For simple variance component models, 

heritability can be obtained directly from the estimated variance components. For more 

complex models, such as spatial models (Section 3.6), we require a more general 

definition. We therefore use the generalized heritability measure described by Cullis, 

Smith & Coombes (2006), defined as  

 

ℎ2 = 1 −
�̅�𝐵𝐿𝑈𝑃

2�̂�𝑔
2

 

where �̅�𝐵𝐿𝑈𝑃 is the mean variance of a difference between two genotype BLUPs (see 

Section 10.6 for background information on BLUPs) and �̂�𝑔
2 is the estimated variance 

component for Genotype. This quantity can be interpreted as a broad-sense mean line 

heritability, derived from an estimate of the correlation between the genotype BLUPs and 

their unknown true value. The estimated trial heritability can be displayed by checking 

the Heritability box under Display on the PSEA Options menu (see Figure 3.4). 

 

3.4 Modelling the genotype structure: test and extra lines 

 

Many trials include extra (often control, check, standard or parental) genotype lines, as 

well as lines from a mapping (or more general) population. It is almost always better to 

analyse the whole trial (i.e. using the full set of lines present) to obtain predicted trait 

means to take forward to a QTL analysis rather than analyse a portion of the trial. Analysis 

of the full trial gives the best estimate of variance parameters that will be used to combine 

information across strata (for unbalanced designs) and estimates of uncertainty in 
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predictions. Analysing portions of a trial is undesirable, as it can lead to different (and 

usually less reliable) estimates of the variance parameters. The Genotypes: section of the 

Preliminary Single Environment Analysis window (Figure 3.3) allows the Genotype factor 

to be partitioned so that the whole trial is analysed but some genotypes can be excluded 

from estimates of heritability and their means not saved for QTL analysis. 

In the simplest case, where all genotypes in the trial are to be included in the QTL 

analysis, the default options are adequate: select the All genotypes in QTL analysis option 

and specify the name of the factor in the Genotypes: input field. If some genotypes present 

in the trial, such as check lines or parents, are to be excluded from the QTL analysis, then 

select the Extra genotypes present option. In this case, two sets of genotypes need to be 

defined: the test lines, genotypes to be taken forward for QTL analysis, and the extra lines, 

genotypes to be excluded from QTL analysis. These two sets can be generated from a 

single factor by using the Create genotype factors button (see Figure 3.10).  

 

 

Figure 3.10: Defining the Genotype structure to accommodate ‘extra’ genotype lines such as 

standards, controls, or parental lines. 

 

First, select the Genotype factor to partition. This brings up the Create Genotype 

Factors window, with the full list of factor labels shown in the Test genotype lines: box. 

Select those lines to be excluded from QTL analysis and move these to the Extra lines: 

box. Each set of labels is used to form a new factor, by default called Genotype_test 

and Genotype_extra, respectively. The Genotype_test factor has levels/labels 

corresponding to the labels in the Test genotype lines: box, with missing values (blank cell) 

used to represent the remaining (extra) lines. The Genotype_extra factor has 



3  Preliminary phenotypic analysis: producing trait means per genotype from trial data 

66 

 

levels/labels corresponding to the labels in the Extra lines: box, plus an additional 

level/label (e.g. level 0 and/or label ‘Test line’) used to identify the set of genotypes taken 

forward for QTL analysis.  

For example, for the CIMMYT spring wheat trials data set there were 167 lines from 

a mapping population (labels SBxxx), two parents (labels SB195SERI and 

SB196BABAX), and a variety used to fill out the design at one site (label 200). The parents 

and the filler variety are not required for QTL analysis, and two lines (SB004 and SB084) 

from the mapping population cannot be included as they have no genotypic data - these 

five labels are moved into the Extra lines: box (Figure 3.10). The labels of the newly 

created Genotype_test and Genotype_extra are shown in Table 3-1. 

 

Table 3-1: Partitioning of Genotype factor for HEAT05 trial into test lines (to be taken forward 

to QTL analysis) and extra lines (to be excluded from QTL analysis). 

 

Full set Test lines Extra lines 

200  200 

SB001 SB001 Test line 

SB002 SB002 Test line 

SB003 SB003 Test line 

SB004  SB004 

SB005 SB005 Test line 

⁞ ⁞ ⁞ 

SB083 SB083 Test line 

SB084  SB084 

SB085 SB085 Test line 

⁞ ⁞ ⁞ 

SB193 SB193 Test line 

SB194 SB194 Test line 

SB195SERI  SB195SERI 

SB196BABAX  SB196BABAX 

 

The Genotype_extra factor is fitted as a fixed term in both steps of the analysis, 

whereas the Genotype_test factor will be used as a random term in the first step and 

as a fixed term in the second step. The output from this analysis for the HEAT05 trial is 

shown below: 
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REML variance components analysis 

================================= 

 

Response variate:  yield_HEAT05 

Fixed model:       Constant + Genotype_extra_HEAT05 

Random model:      Genotype_test_HEAT05 + Rep_HEAT05 + Rep_HEAT05. 

Subblock_HEAT05 

Number of units:   338 

 

Residual term has been added to model 

 

Sparse algorithm with AI optimisation 

Units with missing factor/covariate values included 

   - specific effect for term(s) omitted for units with missing values in 

Genotype_test_HEAT05 

 

 

Estimated variance components 

----------------------------- 

 

Random term               component        s.e. 

Genotype_test_HEAT05         1390.4       181.6 

Rep_HEAT05                   1215.9      1742.7 

Rep_HEAT05.Subblock_HEAT05 

                              180.3        69.2 

 

 

Residual variance model 

----------------------- 

 

Term                           Model(order)  Parameter        Estimate      s.e. 

Residual                       Identity      Sigma2              429.1      50.3 

 

 

Deviance: -2*Log-Likelihood 

--------------------------- 

 

                   Deviance   d.f. 

                    2730.09   329 

 

Note: deviance omits constants which depend on fixed model fitted. 

 

 

Tests for fixed effects 

----------------------- 

 

Sequentially adding terms to fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 
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Genotype_extra_HEAT05               7.13       4          1.78   166.1   0.135 

 

Dropping individual terms from full fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

Genotype_extra_HEAT05               7.13       4          1.78   166.1   0.135 

 

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated 

using algebraic derivatives ignoring fixed/boundary/singular variance 

parameters. 

 

 

       Akaike information coefficient     2738.09 

Schwarz Bayes information coefficient     2753.32 

 

Note: omits constants, (n-p)log(2pi) - log(det(X'X)), that depend only on the 

fixed model. 

 

 

Heritability:       0.8553 

 

565........................................................................... 

 

 

REML variance components analysis 

================================= 

 

Response variate:  yield_HEAT05 

Fixed model:       Constant + Genotype_extra_HEAT05 + Genotype_test_HEAT05 

Random model:      Rep_HEAT05 + Rep_HEAT05.Subblock_HEAT05 

Number of units:   338 

 

Residual term has been added to model 

 

Sparse algorithm with AI optimisation 

Units with missing factor/covariate values included 

   - specific effect for term(s) omitted for units with missing values in 

Genotype_test_HEAT05 

 

 

Estimated variance components 

----------------------------- 

 

Random term               component        s.e. 

Rep_HEAT05                   1214.2       fixed 

Rep_HEAT05.Subblock_HEAT05 

                              180.1       fixed 

 

 

Residual variance model 

----------------------- 
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Term                           Model(order)  Parameter        Estimate      s.e. 

Residual                       Identity      Sigma2              428.5      46.6 

 

 

Deviance: -2*Log-Likelihood 

--------------------------- 

 

                   Deviance   d.f. 

                    1348.11   168 

 

Note: deviance omits constants which depend on fixed model fitted. 

 

 

Tests for fixed effects 

----------------------- 

 

Sequentially adding terms to fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

Genotype_extra_HEAT05              10.57       4          2.64   169.0   0.035 

Genotype_test_HEAT05             1158.63     164          7.06   169.0  <0.001 

 

Dropping individual terms from full fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

Genotype_test_HEAT05             1158.63     164          7.06   169.0  <0.001 

 

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated 

using algebraic derivatives ignoring fixed/boundary/singular variance 

parameters. 

 

 

       Akaike information coefficient     1350.11 

Schwarz Bayes information coefficient     1353.24 

 

Note: omits constants, (n-p)log(2pi) - log(det(X'X)), that depend only on the 

fixed model. 

 

When you use the Save Test Line Means menu for this analysis (Figure 3.9), only the 

genotypes specified in Genotype_test are estimated and stored for subsequent 

analyses. Similarly, the genotype variance component and the heritability are estimated 

only for those genotypes specified in Genotype_test, and so may differ from the 

previous estimate, particularly if the excluded lines are very different from those retained 

for QTL analysis. The other variance parameter estimates may also change, although 

usually these changes will be small. 
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3.5 Trial design and variance models 

 

The Preliminary Single Environment Analysis menu provides a choice of trial designs (via 

the Design: box, see Figure 3.3), and incorporates a subset of the facilities for model 

investigation available in the Mixed Models (REML) menu (Stats | Mixed Models (REML)). 

The appearance of the PSEA menu alters according to the type of experimental design 

selected, giving options appropriate to that design. The pre-defined designs encompass 

some of the most popular choices for plant breeding trials, but a more general model can 

also be specified. In this section we will describe the different designs available, and some 

common models. The process of model selection is described in Section 3.6.  

 

 Randomized complete block design 

The randomized complete block design (RCBD) comprises a number of blocks 

(sometimes called replicates), each containing all of the genotype lines in the trial, with 

genotypes allocated to plots within blocks completely at random. This design is 

appropriate where plots within blocks can be considered as homogeneous, but differences 

are expected between blocks. Figure 3.11 shows the layout of the PSEA menu if Design: 

option Randomized Complete Block Design is chosen. The blocking structure should be 

specified in the Blocks: box, e.g. as Block/Plot where factor Block defines which block 

each plot belongs to, and factor Plot labels plots within each block. 

 

Figure 3.11: Layout of the PSEA menu for a randomized complete block design. 
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 Incomplete block design 

The randomized incomplete block design comprises a number of replicates which each 

contain all of the genotype lines in the trial. Each replicate is split into a number of blocks, 

usually of equal sizes, but the number of units per block is less than the number of 

genotypes. Each block therefore contains a subset of the genotypes. There are many 

different types of incomplete block design (BIBD, lattice design, alpha design, cyclic 

design) which aim to maximize the precision of genotype comparisons by balancing the 

co-occurrence of pairs of genotypes within the same block. This design is appropriate 

where replicates containing the full set of genotypes cannot be considered homogeneous, 

but smaller blocks within replicates can be considered homogeneous. The CIMMYT 

spring wheat trials used incomplete block designs, as described in Section 1.3.3 and 

shown in Figure 3.1. Figure 3.3 showed the layout of the PSEA menu if Design: option 

Incomplete Complete Block Design is chosen. The blocking structure, e.g. Rep/Subblock 

for the HEAT05 trial, is specified using the Blocks: box. Note that if plots had been labelled 

within sub-blocks as 1-13 by factor SPlot, then the structure could have been fully 

specified as Rep/Subblock/SPlot. 

 

 Spatial design in regular grid 

The structure of an incomplete block design implies correlation between measurements 

on plots that depends on their co-location within the same replicate or sub-block (see 

Section 10.2). This correlation structure is discrete, with step changes at replicate and 

sub-block boundaries. In principle, we might expect the pattern of correlation to depend 

more on physical spatial proximity than on a pre-defined blocking structure. An approach 

based on modelling observed patterns of correlation within an experiment would 

therefore use random effects with correlation based on spatial location. However, 

ignoring the experimental design is unsatisfactory, as the randomization structure 

generates the correct strata and degrees of freedom (df) for testing fixed model terms. 

This is a particularly important consideration for designs where treatments are applied at 

a level higher than the observational unit; for example, split plot designs, where multiple 

samples are taken from a plot, or when technical replicates are used to improve the 

measurement process. We therefore recommend a hybrid approach, where we use random 

terms to account for the structure of the experimental design and add terms as required to 

take account of additional patterns of correlation. 

For field trials laid out on a grid pattern, with regular spacing of rows and columns, 

the most common patterns of observed correlation comprise trends across the trial, row 
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and/or column effects which may be associated with field management operations, and 

spatial correlations across rows and/or columns (see Gilmour et al., 1997). All of these 

options are enabled by using the Design: setting Spatial Design in Regular Grid (Figure 3.12). 

The different model components and the question of model selection are discussed in 

Section 3.6.  

 

 

Figure 3.12: Layout of the PSEA menu for a spatial design in regular grid for HEAT05 trial.  

 

Spatial correlation is usually imposed at the plot level for a field trial, which 

corresponds to the model deviations or residual term unless the measurements used 

multiple samples per plot or technical replication. It is common to assume that correlation 

across rows and columns act independently, which leads to a separable correlation 

structure. The auto-regressive structure of order 1 (AR1) is a flexible model for serial 

correlation that is often used in this context. For example, a model for spatial correlation 

in the HEAT05 trial might use a separable AR1 process across both rows and columns, 

applied at the plot level. Then if plot i is in row ri and column ci, and plot j is in row rj 

and column cj, the spatial covariance between these two plots is modelled as 
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cov(𝑒𝑖, 𝑒𝑗) = 𝜎2𝜌𝑟

|𝑟𝑖−𝑟𝑗|𝜌𝑐

|𝑐𝑖−𝑐𝑗|
. 

This spatial covariance depends on the residual variance, σ2, the spatial correlation 

across rows, ρr, the spatial correlation across columns, ρc, and the displacement between 

the plots in the row and column directions. Covariance due to other random terms is added 

onto this quantity. The correlation parameters, ρr and ρc, must lie between -1 and 1 and 

so correlation decreases as the row and column displacement increases (see Genstat 

Statistics Guide, Section 5.4, for more details). This model can be simplified by allowing 

one of the spatial processes to become an identity model, in which case no spatial 

correlation is generated in that direction by this term. 

The PSEA menu for Design: setting Spatial Design in Regular Grid deals with the case of 

a regular rectangular grid, with units indexed by factors for rows and columns and all row 

and column combinations present. If data for some plots is missing, then the plots should 

be included in the data set, with their row and column values set, but with a missing value 

for the trait value(s). For this menu, only one measurement per plot is allowed. If there 

are several measurements per plot which are true replicates, e.g. sub-samples or technical 

replicates, and if there are the same number of measurements in each plot, then it is valid 

to analyse plot means. In all other cases, or for a non-rectangular layout, it will be 

necessary to analyse the data using the appropriate menu under Stats | Mixed models 

(REML), then construct the set of predicted trait means as described in Section 3.5.5 below. 

Figure 3.12 shows the layout of the PSEA menu with Spatial Design in Regular Grid, 

using settings for the final HEAT05 model established in Section 3.6. This model uses a 

separable AR1 structure across rows and columns, in addition to the design blocking 

structure (Rep/Subblock) and added linear trend across both rows and columns. 

Explanation of this model is given in Section 3.6. 

For this Design: setting, it is possible to obtain plots of two-dimensional variograms 

from the Further Output button in order to diagnose problems with the spatial model, as 

discussed in Section 3.6. 

 

 General designs 

The General design setting is intended to cope with other forms of experimental designs, 

or variations on the standard models. The layout for the PSEA menu using this Design: 

setting is shown in Figure 3.13. Additional fixed (Additional Fixed Terms:) and random 

(Additional Random Terms:) terms can be added to the baseline model consisting of the 

Genotype factor.  
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Figure 3.13: Layout of the PSEA menu for a general design.  

 

As previously, the random terms will usually comprise the randomization and other 

physical structure of the design. However, it may occasionally be helpful to fit some of 

the blocking structure as fixed terms, and this menu makes that possible. Usually, only 

structure at the top level of a design, corresponding to complete replicates (and therefore 

containing no treatment information) and with few levels, would be fitted as fixed (e.g. 

replicates in an incomplete block design). The rationale for this approach is that 

estimation of variance components can be very poor for terms with few (<5) levels and 

the estimate may be negative, especially if differences at that level are not large. Even if 

there is some treatment information at this level, it may not be sensible to use the poorly 

estimated variance component as a basis for combination of information, and fitting a 

block term as fixed means that only treatment information from lower strata will be used.  

 

 Other designs 

The Design: settings on the PSEA menu cannot deal with the full range of experimental 

designs that may be encountered in practice, and an alternative strategy must be followed 

for these other types of design. This may be necessary for spatial models with an irregular 
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layout, or with multiple measurements per plot, models for repeated measurements, or 

models including spline terms. In these cases, it is necessary to first identify a suitable 

model for the trait in each environment - some guidance on procedure is given for spatial 

models in Section 3.6 below, and a general recipe for building mixed models is given in 

Section 10.8. Further information on the various options given under Stats | Mixed models 

(REML) can be found in A Guide to REML in Genstat. Once a model has been identified, 

then predictions of trait means can be made using the Predict button. Alongside the 

predictions, it is possible to save standard errors and the full variance-covariance matrix 

of the predictions, from which unit errors can be derived as described in Section 3.2. 

These predictions, SEs and unit errors can be stored in a Genstat spreadsheet with the 

genotype labels, and a text column giving the environment name added. Once several 

spreadsheets have been accumulated for the different environments, these can be 

appended together (Spread | Manipulate | Append, see Figure 3.14) to give a data set of trait 

means that can be imported directly into the QTL Data Space. 

 

 

Figure 3.14: Appending Genstat spreadsheets. 
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3.6 Variance modelling 

 

In this section, we illustrate variance modelling via the specific example of spatial trends 

in the HEAT05 field trial. Examples in different contexts (variance components model, 

longitudinal data) can be found in A Guide to REML in Genstat or the Genstat Statistics 

Guide.  

Some field trials for mapping populations are large (e.g. > 500 genotypes) and can take 

up large areas of land. This increases the chance that spatial trends will be present in the 

field. In addition, crop management operations tend to act along columns and/or rows of 

a trial, and can induce additional (extraneous) patterns of variation. These natural and 

extraneous spatial trends can be accounted for using spatial modelling. More details on 

this approach can be found, with examples, in Gilmour et al. (1997) and Stefanova et al. 

(2009). Here we illustrate the approach using the HEAT05 field trial, loaded as the 

individual trial from Genstat workbook SB_HEAT05.gwb. The field layout (shown in 

Figure 3.1) consisted of a rectangular array with 26 rows and 13 columns. The two 

replicates corresponded to rows 1-13 and rows 14-26, and the sub-blocks were the 

individual rows. This corresponds to a regular grid, so we will work with the menu for 

building spatial mixed models (Stats | Mixed Models (REML) | Spatial Models | Regular Grid, 

see Figure 3.15). 

 

 

Figure 3.15: Menus for spatial analysis using mixed models. 
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In Section 10.8, we give a recipe for building a mixed model, and we will broadly 

follow that approach. However, we will add a preliminary stage where we investigate the 

spatial trend, and we will do this ignoring the structure of the experimental design. For 

the reasons given in Section 10.2, we would not normally consider a model excluding 

these terms because of their potential importance in testing fixed terms, but we exclude 

them for this exploratory step in order to simplify interpretation of the initial diagnostic 

plots. As our exploratory model, we fit a separable AR1×AR1 model across rows and 

columns, specified as shown in Figure 3.16. The Row factor labels the rows of the layout 

and the Column factor labels the columns. The factor Genotype is included as a random 

term.  

 

 

Figure 3.16: Specification of exploratory model for HEAT05 trial. 

 

We will use the residuals from this model to investigate the presence of spatial trend. 

After the model has been fitted (by clicking on the Run button), the Save button becomes 

active and can be used to save residuals and various other results from the analysis (Figure 

3.17). In Figure 3.17, we have chosen to form residuals from the final random term only 

(see Section 10.7), and to save the residuals in a structure called Res.  
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Figure 3.17: Saving residuals via Save button on Spatial Model - Regular Grid menu. 

 

It can be very helpful to plot the residuals against the rows and columns of the layout 

in order to detect spatial patterns. We can do this using a trellis plot (Graphics | Trellis Plot) 

defined as shown in Figure 3.18. We have specified that the residuals (Y-values: Res) be 

plotted against the row numbers (X-values: Row), forming a separate plot for each column 

(Groups for frames: Column). We have asked for the plotting to be done using both points 

and lines, so that the points will be interpolated by straight lines. We have also added axis 

titles and set the label spacing using the X Axis and Y Axis tabs (not shown). The resulting 

plot is shown in Figure 3.19. 
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Figure 3.18: Specifying a trellis plot of residuals. 
 

 

Figure 3.19: Plot of residuals from exploratory model against row number, for each column. 
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There is a clear linear trend across rows (Figure 3.19). This trend is reflected in the 

large variance component obtained for factor Rep in the design-based analysis of Section 

3.1. However, the factor Rep fits a single common effect for the whole of the first 

replicate, then another effect for the whole of the second replicate, and this does not 

account for the linear trend. The term Rep.Subblock does fit a separate effect for each 

individual row in the design-based model, and this term will account for the remaining 

trend, as shown in Figure 3.20. But the assumption behind the Rep.Subblock effects is 

that they are independent and uncorrelated, which is clearly not the case here. This is an 

example of so-called global trend, a strong trend that extends across the whole trial, and 

this is best accounted for by modelling the linear trend directly. This term can be added 

to the model by checking the Linear trend across rows box on the Spatial Model - Regular 

Grid menu (Figure 3.16). 
 

 
Figure 3.20: BLUPs for Rep.Subblock term from design-based analysis of the HEAT05 trial 

(Section 3.1). 

 

Likewise, a trellis plot can be used to plot the residuals from the exploratory model 

against column number, separately for each row (Figure 3.21). This plot also shows a 

trend running across columns, and we can model this global trend using a linear term by 

checking Linear trend across columns.  
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Figure 3.21: Plot of residuals from exploratory model against column number, for each row. 

 

Before fitting a new model, we will confirm these conclusions using additional 

residual plots obtained directly from the Spatial Model - Regular Grid | Further Output menu 

(Figure 3.22). From the Residual Plots menu, we could obtain shade (or contour) plots of 

the residuals in field layout, as done in Section 3.1 & Figure 3.8. From the Display 

Variogram menu, we can generate a two-dimensional variogram (Figure 3.22), as 

described by Stefanova et al. (2009). 

A variogram is a diagnostic tool used to investigate patterns of spatial correlation in 

plot residuals, commonly used in geo-statistics and applied to two-dimensional trends in 

field trials by Gilmour et al. (1997). The value of the two-dimensional variogram at 

position (i,j) is the average squared difference for all pairs of residuals from plots that are 

i rows and j columns apart. The variogram value at the origin (0, 0) is always zero. 

Stefanova et al. (2009) give examples of typical patterns seen in practice. A global trend 

across the trial generates a trend across the range of the variogram. Row (or column) 

effects tend to generate systematic patterns in the row (or column) direction. Serial 

correlation across rows tends to generate a smooth curve in the variogram in the row 
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direction, increasing away from the origin up to a plateau. Uncorrelated residuals will 

generate a rough but flat plateau, apart from the zero value at the origin. 

 

 

Figure 3.22: Spatial Model Further Output menu with Variogram Options. 

 

The variogram generated from our exploratory model is shown in the left-hand-side of 

Figure 3.23. This variogram does not plateau, reflecting the presence of linear trend in 

both the row and column directions. 

 

 

Figure 3.23: Sample variogram from exploratory model (left) and with linear row and column 

effects added (right). 
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If we re-fit the model with linear row and column effects added, we obtain the 

variogram on the right-hand-side of Figure 3.23: this variogram does now appear to 

plateau (apart from a little noise) and the smooth increase suggests the presence of serial 

correlation in both directions. Residual plots from this model (not shown) indicate no 

evidence of any remaining global trends. There is no suggestion of the presence of row 

and column effects either from the variogram (no systemetic patterns in either direction) 

or residual plots. A summary of the model, estimated variance parameters and Wald tests 

from this model (Options | Display then check Model and Variance components from the 

Spatial Model - Regular Grid menu) are shown in the output below: 

 

REML variance components analysis 

================================= 

 

Response variate:  yield 

Fixed model:       Constant + lin_row + lin_col 

Random model:      Row.Column + Genotype 

Number of units:   338 

 

Row.Column used as residual term with covariance structure as below 

 

Sparse algorithm with AI optimisation 

All covariates centred 

 

 

Covariance structures defined for random model 

---------------------------------------------- 

 

Covariance structures defined within terms: 

 

Term                  Factor      Model                        Order  No. rows 

Row.Column            Row         Auto-regressive (+ scalar)       1        26 

                      Column      Auto-regressive                  1        13 

 

 

Estimated variance components 

----------------------------- 

 

Random term               component        s.e. 

Genotype                     1391.7       166.4 

 

 

Residual variance model 

----------------------- 
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Term            Factor       Model(order)  Parameter        Estimate      s.e. 

Row.Column                                 Sigma2              336.1      43.1 

               Row           AR(1)         phi_1              0.2894    0.0835 

               Column        AR(1)         phi_1              0.4939    0.0700 

 

 

 

Tests for fixed effects 

----------------------- 

 

Sequentially adding terms to fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

lin_row                           153.60       1        153.60    27.2  <0.001 

lin_col                            42.76       1         42.76    35.7  <0.001 

 

Dropping individual terms from full fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

lin_row                           149.87       1        149.87    27.2  <0.001 

lin_col                            42.76       1         42.76    35.7  <0.001 

 

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated 

using algebraic derivatives ignoring fixed/boundary/singular variance 

parameters. 

 

From the model summary, we can see that the menu has generated term Row.Column, 

used as the residual term, to which the spatial model is applied. The Wald tests for the 

linear trend across both rows (lin_row) and columns (lin_col) are highly significant, 

reflecting the strong trend observed (background information on Wald tests is given in 

Section 10.6). The correlation parameters for the AR1 processes are 0.289 for rows and 

0.494 for columns, suggesting the presence of some local spatial trend. 

We are now ready to build a model for this data. We will re-introduce the design 

structure as random terms Rep/Subblock in addition to the spatial model at the plot 

level and the Genotype factor. Linear row and column trends will still be fitted as fixed. 

This model specification is shown in Figure 3.24, and we have chosen to display the 

model summary, variance components, deviance and information criteria to obtain the 

output below: 
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Figure 3.24: Settings for spatial model for HEAT05 trial including design factors. 

 

REML variance components analysis 

================================= 

 

Response variate:  yield 

Fixed model:       Constant + lin_row + lin_col 

Random model:      Row.Column + Rep + Rep.Subblock + Genotype 

Number of units:   338 

 

Row.Column used as residual term with covariance structure as below 

 

Sparse algorithm with AI optimisation 

All covariates centred 

 

 

Covariance structures defined for random model 

---------------------------------------------- 

 

Covariance structures defined within terms: 

 

Term                  Factor      Model                        Order  No. rows 

Row.Column            Row         Auto-regressive (+ scalar)       1        26 

                      Column      Auto-regressive                  1        13 
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Estimated variance components 

----------------------------- 

 

Random term               component        s.e. 

Rep                            22.4        82.3 

Rep.Subblock                   23.2        29.8 

Genotype                     1392.8       166.5 

 

 

Residual variance model 

----------------------- 

 

Term           Factor        Model(order)  Parameter        Estimate      s.e. 

Row.Column                                 Sigma2              304.6      47.2 

               Row           AR(1)         phi_1              0.2665    0.0881 

               Column        AR(1)         phi_1              0.4425    0.0944 

 

 

 

Deviance: -2*Log-Likelihood 

--------------------------- 

 

                   Deviance   d.f. 

                    2638.51   329 

 

Note: deviance omits constants which depend on fixed model fitted. 

 

 

       Akaike information coefficient     2650.51 

Schwarz Bayes information coefficient     2673.40 

 

Note: omits constants, (n-p)log(2pi) - log(det(X'X)), that depend only on the 

fixed model. 

 

The inclusion of the Rep/Subblock design structure has had little impact on the 

variance parameters. The deviance and information criteria can be used to compare 

random models (for details see Section 10.4). We would not drop the design structure, 

but we might investigate whether the small correlation across rows is really improving 

the variance model. We can drop this correlation from the model by setting Row-model: 

Identity on the Spatial Model - Regular Grid menu. We re-fit and obtain the following values 

of the deviance and information criteria: 

 
Deviance: -2*Log-Likelihood 

--------------------------- 

 

                   Deviance   d.f. 

                    2644.17   330 
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Note: deviance omits constants which depend on fixed model fitted. 

 

 

       Akaike information coefficient     2654.17 

Schwarz Bayes information coefficient     2673.25 

 

Note: omits constants, (n-p)log(2pi) - log(det(X'X)), that depend only on the 

fixed model. 

 

This model is nested within the previous model, by setting the row correlation 

parameter equal to zero, so we can use a likelihood ratio test to compare the two models. 

The deviance has increased by 5.66 units, which is large compared to a chi-square 

distribution on 1 df (95th percentile = 3.84) and so we conclude that this parameter, 

although small, has significantly improved the fit of the model. The AIC has also 

increased, although the SIC has decreased very slightly. For nested models, we would 

usually use the likelihood ratio test based on the change in deviance in preference to the 

information criteria, and so we do not change our conclusions. The increase in deviance 

is even larger (as we might expect) if we set the column correlation parameter equal to 

zero. We therefore conclude that the previous model, including the design structure as 

well as separable spatial trend over both rows and columns, with global linear trend for 

rows and columns, gives an adequate model for this trial. We can then go on to use this 

model to produce predicted means for QTL analysis. 

 

3.7 Extension to multi-trait data sets 

 

The PSEA menu can also be used for preliminary analysis of several traits for the same 

trial, prior to a multi-trait analysis (see Chapter 7). In this case, the predicted trait means 

should be kept as separate data sets, and not combined together. However, these separate 

preliminary analyses ignore correlations across measurements from the same plots, 

whereas better predictions may sometimes be obtained from a multivariate analysis, 

particularly when some data is missing. An alternative approach is a joint analysis of the 

traits using the Stats | Mixed Models (REML) | Multivariate Linear Models menu, followed by 

prediction (Predict), then the predicted trait means can be imported directly into the QTL 

Data Space.  
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4 Multi-environment trial analyses: modelling 

genotype by environment interaction  

 

A multi-environment trial (MET) comprises a series of experiments conducted over a 

variety of environmental conditions. Plant breeding programmes generate MET data 

when evaluating genotypes (i.e. cultivars) across a range of geographic locations, and 

possibly over a number of years (or seasons). The set of trials within and across years is 

designed to provide a range of growing conditions, and the term “environments” is used 

to describe these conditions (i.e. the combinations of locations and years). Of interest is 

to identify genotypes that perform well in all environments (i.e. broad adaptation). 

However, the relative performance of the genotypes can change between environments; 

known as genotype by environment (G×E) interaction. The G×E phenomenon results 

from different genotypes responding to environmental variation in different ways. In QTL 

analysis, a key objective is to determine if QTL effects are consistent across 

environments, or whether there are environmental interactions (QTL×E). 

The identification of QTLs from MET data depends on the appropriate modelling of 

the G×E interaction. In this chapter, we illustrate the use of a mixed model to quantify 

and describe the G×E interaction. We outline the underlying statistical theory for 

modelling MET data, including the different variance-covariance models available for the 

G×E matrix in Genstat (Section 4.1). Then, we demonstrate the use of the Select Best 

Variance-covariance Model menu to select the best variance-covariance model for 

subsequent use in linkage analysis (Section 4.2), and describe how to fit weights to 

accommodate within-trial plot variation (Section 4.3). Finally, we illustrate the use of 

other exploratory tools (AMMI and GGE biplots) to investigate the structure of the G×E 

interaction (Section 4.4). 

 

In this chapter you will learn how to perform a G×E analysis for a multi-environment trial 

data set, including:  

 the different variance-covariance models available for the G×E matrix in Genstat 

(Section 4.1) 

 how to select the best variance-covariance model for use in linkage analysis 

(Section 4.2) 

 how to accommodate the within-trial plot variation (Section 4.3) 

 how to use other exploratory tools for analysis of G×E variation: AMMI and GGE 

biplots (Section 4.4).  
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4.1 Modelling genotype by environment interaction 

 

A statistical analysis of MET data aims to provide reliable predictions of genotype 

performance across environments. In this section, we describe the use of a linear mixed 

model to quantify and characterize the G×E interaction. We begin by illustrating the G×E 

phenomenon (Section 4.1.1; also see Malosetti et al., 2013) before discussing the 

underlying linear mixed model framework for modelling a MET (Section 4.1.2; also see 

Smith et al., 2005), including the different variance-covariance models available in 

Genstat to describe the variation between genotypes both within and across environments 

(Section 4.1.3).  

In Genstat, G×E analysis is performed on the table of G×E trait means (with their unit 

errors if available). This is the so-called two-stage strategy for analysing MET data (see 

Section 4.2). 

 

 Genotype by environment interaction 

G×E interaction occurs when the relative phenotypic performance of a set of genotypes 

depends on the environment. Whereas some genotypes may perform well across a wide 

range of environmental conditions (i.e. broadly adapted genotypes), others perform well 

in only a subset of environments (i.e. specifically adapted genotypes).  

To illustrate G×E interaction, consider the phenotypic response of two genotypes 

across two environments. The four possible patterns of phenotypic response are shown in 

Figure 4.1. The first pattern (Figure 4.1a) is of no interaction, where the effects of 

genotype and environment are independent of one another (i.e. behave additivity). That 

is, the difference in phenotypic response between the two genotypes is the same across 

the two environments. In this case, Genotype 2 yields more than Genotype 1 by a 

constant amount in both environments. The three remaining patterns (Figure 4.1b-d) are 

non-additive. Here the difference between genotypes changes between environments, i.e. 

genotypic performance is dependent on environment. The cross-over interaction (Figure 

4.1d) is the most critical for breeders. It implies that the choice of the best genotype is 

determined by the environment, seriously hampering efforts to select genotypes that 

perform well across a range of environmental conditions. When the ordering of 

environments has a biological interpretation, the divergence pattern in Figure 4.1b is 

perhaps more common.  
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a) 

 

b)

 

c)

 

d)

 

Figure 4.1: Patterns of G×E interaction: a) additivity, b) divergence, c) convergence, and d) cross-

over. 

 

Using Figure 4.1, we have considered the effect of G×E interaction on relative changes 

in mean phenotypic response. However, G×E interaction can also have consequences on 

genetic variance and correlation (or covariance). For example, when the G×E interaction 

is large, the phenotypic performance of a set of genotypes in one environment may not 

be very informative about their performance in another, very different environment. This 

results in a low genetic correlation. Only those environments with similar characteristics 

lead to a strong genetic correlation. Furthermore, G×E interaction can induce 

heterogeneity of genetic variance across environments, where the magnitude of genetic 
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variance within an individual environment is different between environments (Malosetti 

et al., 2013).  

In Figure 4.2 we illustrate the effects of G×E interaction on genetic variance and 

correlation between two environments. In the case of Figure 4.2a, the variation between 

genotypes is similar in both environments (i.e. homogeneous). However, as there is no 

consistent pattern in relative genotypic performance between the two environments, the 

genetic correlation is low. In Figure 4.2b, the correlation between the two environments 

is negative, as the cross-overs mean that genotypes high in Env 1 will be low in Env 2, 

but it is clear that the variation between genotypes in Env 1 is substantially smaller than 

Env 2 - this is variance heterogeneity.  

 

a)  

 

b)  

 

Figure 4.2: Examples illustrating the effects of G×E interaction on genetic variance and 

correlation.  

 

 General model for the analysis of MET data 

There are a number of possible models for MET data. These models are built by stacking 

the data vectors for each individual trial (i.e. environment). The basic model consists of 

genotype and environment effects plus their interaction. In their review paper, Smith et 

al. (2005) discuss the classification of genotype effects as fixed or random. They follow 

an approach motivated by a quantitative genetics interpretation of the G×E interaction. 

As explained by Falconer & Mackay (1996), the phenotypic response in each 

environment can be regarded as a different “character”. If the genetic correlation between 

environments is high, then phenotypic performance in the different environments 
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represents essentially the same character. Conversely, if it is low, then the characters are 

very different. In other words, genetic correlation between phenotypic responses in 

different environments provides information on the similarity of these characters. This 

leads naturally to classifying the genotype and G×E interaction effects as random, with 

independence between genotypes and some variance-covariance matrix across 

environments. Environments are then fitted as fixed effects in the linear mixed model. 

This is the approach taken by Genstat. 

In Genstat, the analysis of MET data is performed on the trait means for each genotype; 

known as a two-stage analysis (see Section 4.2). These are obtained from the separate 

analyses of the individual trials (as described in Chapter 3). The model for the observed 

entry, yij, in the G×E table of genotype i (i=1, …, n) by environment j (j=1, …, m) trait 

means is: 

 𝑦𝑖𝑗 = 𝐸𝑗 + 𝑢𝑖𝑗 + 𝑒𝑖𝑗 Equation 1 

 

where Ej represents the fixed effect of environment j, uij the random effect of genotype i 

in environment j (i.e. the combined genotype and interaction effect), and eij the error in 

the data arising from within-trial variation, known as the “unit error”. If estimates of unit 

error are not available, this term is omitted from the model.  

The G×E random effects, uij, are assumed to be Normally distributed with mean 0 and 

variance-covariance structure VCOV(uij). An important step in G×E analysis is selecting 

an appropriate variance-covariance model to portray the variation between genotypes 

both across and within environments. The selected model is used as the default variance-

covariance model in subsequent QTL analysis. In the following section, we describe the 

variance-covariance models available in Genstat. 

 

 Variance-covariance models 

A statistical analysis of MET data aims to provide reliable predictions of genotype 

performance across environments. This requires selecting an appropriate variance-

covariance model to describe the variation between genotypes both across and within 

environments. For example, Figure 4.2b illustrates the need to allow for heterogeneity of 

variance between environments.  

To help you decide which variance-covariance models best suits your data set and 

analysis needs we described them in turn. For each model, the structure of the variance-

covariance matrix, VCOV(uij), is summarized in Table 4-1. 
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4.1.3.1 Identity 

The simplest model, the identity model, assumes that the within-environment variances 

are all the same, and that the environment covariances (or correlations) are equal to 0. 

That is, this model does not allow for heterogeneity of genetic variance across 

environments nor genetic correlations between environments. In practice, this model is 

rarely realistic. 

 

4.1.3.2 Compound symmetry 

The compound symmetry model (also known as the uniform model) partitions the effect 

uij into two parts, uij = Gi + (GE)ij, one corresponding to the random genotype main 

effect and the other to the residual (which includes the true G×E interaction and the 

residual error). Gi and (GE)ij are fitted as random terms with independent effects and 

variance components var(Gi)=𝜎𝑔
2 and var((GE)ij)= 𝜎𝑔𝑒

2 , respectively. It generates a 

uniform covariance structure, with equal variances and covariances across environments. 

That is, the variation between genotype effects is the same within each environment, and 

the covariance across environments is the same for every pair of environments.  

The compound symmetry model has traditionally been used to model MET data from 

plant breeding trials. However, in practice it is unrealistic as genotype variation tends to 

differ among environments, giving heterogeneity of genetic variance (Figure 4.2b), and 

some environments are more alike than others, resulting in unequal correlations between 

pairs of environments. 

 

4.1.3.3 Diagonal 

The diagonal model allows a separate variance for each environment, (𝜎𝑔𝑒𝑗

2 : j = 1, ..., m) 

but the covariances between environments are set to 0. This accommodates heterogeneity 

of genetic variance across environments but does not model the genetic covariances (or 

correlations) between environments. 

 

4.1.3.4 Uniform covariance with unequal variances 

The uniform covariance with unequal variance model (sometimes also called the 

heterogeneous compound symmetry model) is a combination of the compound symmetry 

and diagonal models. Gi is fitted as a random term and the individual environment 

variances (𝜎𝑔𝑒𝑗

2 : j = 1, ..., m) are modelled, allowing for heterogeneity of genetic variance 

across environments. However, a common covariance between environments is assumed. 
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4.1.3.5 Uniform correlation with unequal variances 

The uniform correlation with unequal variance model is similar to uniform covariance 

with unequal variance model but assumes a common correlation between environments. 

The heterogeneity of individual environment variances is accommodated. 

 

4.1.3.6 Factor analytic of order k 

The factor analytic models are multiplicative models that parsimoniously accommodate 

heterogeneity of genetic variance across environments and model the genetic covariances 

between environments. This model therefore captures the nature of heterogeneous 

variances and covariances found to occur in most MET data. A factor analytic model of 

order k uses k factors to describe the variance-covariance matrix, VCOV(uij). See Smith 

et al., 2001b for details. The QTL menus allow for k = 1 or 2. Note, FA2 is not available 

for less than 5 environments. 

 

4.1.3.7 Unstructured 

The most general form of the variance-covariance matrix, VCOV(uij), which does not 

impose constraints on correlations in genetic performance across environments, is of a 

fully unstructured form. However, it is not parsimonious and may be difficult to fit when 

the number environments (m) is large or the number of genotypes (n) is small. 
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Table 4-1: Variance-covariance models for VCOV(uij). 

Description Abbreviation in 

output 

Variance-covariance 

matrix 

Variance Covariance Number of 

parameters 

Identity identity 𝜎𝑔𝑒
2 I homogeneous 

𝜎𝑔𝑒
2  

none 

0 

1 

Compound symmetry cs 𝜎𝑔
2 J + 𝜎𝑔𝑒

2  I homogeneous 

𝜎𝑔
2 + 𝜎𝑔𝑒

2  

homogeneous 

𝜎𝑔
2 

2 

Diagonal diagonal D heterogeneous 

𝜎𝑔𝑒𝑗

2  

none 

0 

m 

Uniform covariance, 

unequal variances 

hcs 𝜎𝑔
2 J + D heterogeneous 

𝜎𝑔
2 + 𝜎𝑔𝑒𝑗

2  

homogeneous 

𝜎𝑔
2 

m + 1 

Uniform correlation, 

unequal variances 

outside √D K √D heterogeneous 

𝜎𝑔𝑒𝑗

2  

homogeneous 

𝜎𝑔
2 

m + 1 

Factor analytic order 1 fa ’ + D heterogeneous 

λ1j
2 + 𝜎𝑔𝑒𝑗

2  

heterogeneous 

λ1jλ1j∗ 

2m 

Factor analytic order 2 fa2 ’ + D heterogeneous 

λ1j
2 + λ2j

2 + 𝜎𝑔𝑒𝑗

2  

heterogeneous 

λ1jλ1j∗ + λ2jλ2j∗ 

3m 

Unstructured unstructured √D K √D heterogeneous 

𝜎𝑔𝑒𝑗

2  

heterogeneous 

𝜎𝑗𝑗∗
2  

m(m + 1)/2 

m is the number of environments. 

𝜎𝑔
2 and 𝜎𝑔𝑒

2  are variance components for the genotype and G×E interactions random effects, respectively.  

I is an identity matrix of size m. 

J is an m × m matrix of ones. 

D is a diagonal matrix containing environment specific variances (𝜎𝑔𝑒𝑗
2 : j = 1, ..., m).  

K is an m × m matrix of ones on the diagonal and 𝜃𝑗𝑗∗  on the off-diagonals, where 𝜃𝑗𝑗∗  is the correlation between environment j and j*. 

is an m × k matrix of loadings, 𝜆k𝑗, from a factor analytic model of order k. 
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4.2 Genotype-by-environment analysis  

 

In Genstat, G×E analysis of MET data is performed in two-stages (see Smith et al., 2001a; 

Welham et al., 2010). In the first stage (stage I), trait means (yij) and unit errors (eij) for 

each genotype are obtained from the separate analysis of the individual trials comprising 

the MET (refer to Chapter 3). These are then combined in an overall mixed model analysis 

in the second stage (stage II). In this section, we illustrate stage II of the G×E modelling 

process using trait means from the 8 environment CIMMYT maize trials (Section 1.3.2) 

held in file F2maize_pheno.csv. 

The stage II analysis may be unweighted (e.g. Patterson & Silvey, 1980) or weighted, 

using the unit error, to reflect the relative precision of genotype means from each trial 

(e.g. Smith et al., 2001a). Weighted analyses are discussed in Section 4.3.  

If raw plot (unit) data are available refer to Chapter 3, Section 3.2, to obtain the trait 

means and unit errors. Before embarking on G×E analysis, exploratory data analysis is 

recommended (see Section 2.4.1). 

G×E analysis is performed using the Select Best Variance-covariance Model menu 

(Figure 4.3) accessed via Stats | QTLs (Linkage/Association) | Phenotypic Analysis | Select Best 

Variance-covariance model for Multiple Environments; or, from the QTL Data View shortcut 

Phenotypic analysis | Select Best Variance-covariance model for Multiple Environments. 
 

 

Figure 4.3: Select Best Variance-covariance Model window for analysis of yld trait means from 

the F2maize_pheno.csv data set. 
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The fields for Quantitative trait means:, Genotype factor: and Environment factor: are 

automatically filled using available data in the QTL Data Space. We set the Quantitative trait 

means: field to yld.  

Different models can be fitted that assume different variance-covariance structures 

(see Section 4.1.3), and their goodness of fit compared to select the best model. The 

appropriate set of variance-covariance models to compare will depend on the complexity 

of the data set and the aims of your analysis. For the purpose of illustration, we compare 

all available models (Figure 4.3).  

Clicking on the Options button opens the Select Variance-covariance Model Options 

window (Figure 4.4) where you can specify what output to display, which information 

criterion to use for comparing the different models, and whether to include unit errors in 

the analysis (see Section 4.3). The default is to provide the Summary table of the variance-

covariance models fitted and use the Schwarz information criterion (SIC) to select the best 

model. We also request output from the best model to be displayed by selecting Best 

model.  

 

 

Figure 4.4: Options for the Select Best Variance-covariance Model menu.  

 

The output from the analysis of yld is given below: 
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Summary 

======= 

 

Trait: yld 

 

          Model         AIC         SIC    Deviance NParameters 

             FA       17471       17524       17439          16 

            FA2       17455       17532       17409          23 

        OUTSIDE       17523       17554       17505           9 

   UNSTRUCTURED       17456       17577       17384          36 

            HCS       17692       17722       17674           9 

             CS       17918       17924       17914           2 

       DIAGONAL       17906       17933       17890           8 

       IDENTITY       18287       18290       18285           1 

 

Best model: FA (on basis of criterion SIC) 

 

 

 

Residual variance model 

----------------------- 

 

Term             Factor        Model(order)  Parameter        Estimate      s.e. 

genotype.env                                 Sigma2              1.000     fixed 

                 genotype      Identity      -                       -         - 

                 env           FA(1) (covariance form) 

                                             g_11                75.02     10.59 

                                             g_21                108.8       9.3 

                                             g_31                115.5       9.2 

                                             g_41                28.53      4.71 

                                             g_51                19.37      4.60 

                                             g_61                122.6      13.3 

                                             g_71                83.61      8.72 

                                             g_81                108.0       9.7 

                                             psi_1              16910.     1752. 

                                             psi_2               9544.     1191. 

                                             psi_3               8527.     1146. 

                                             psi_4               3540.      360. 

                                             psi_5               3535.      351. 

                                             psi_6              24025.     2633. 

                                             psi_7              10176.     1127. 

                                             psi_8              11013.     1321. 

 

 

 

Estimated covariance models 

--------------------------- 

 

Variance of data estimated in form: 

 

V(y) = Sigma2.R 
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where: V(y) is variance matrix of data 

       Sigma2 is the residual variance 

       R is the residual covariance matrix 

 

 

Residual term: genotype.env 

 

Sigma2: 1.000 

 

R uses direct product construction 

 

Factor: genotype 

Model:  Identity ( 211 rows) 

 

Factor: env 

Model:  FA (covariance) 

 

Covariance matrix: 

 

 

1   22537 

2    8159   21373 

3    8662   12558   21860 

4    2140    3103    3295    4354 

5    1453    2107    2237     553    3910 

6    9197   13335   14157    3498    2375   39057 

7    6272    9093    9654    2386    1620   10251   17166 

8    8105   11751   12475    3083    2093   13246    9033   22686 

        1       2       3       4       5       6       7       8 

 

 

 

Correlation matrix: 

        HN96b       1.0000 

        IS92a       0.3717      1.0000 

        IS94a       0.3902      0.5810      1.0000 

        LN96a       0.2161      0.3217      0.3377      1.0000 

        LN96b       0.1548      0.2305      0.2419      0.1340      1.0000 

        NS92a       0.3100      0.4615      0.4845      0.2683      0.1922 

        SS92a       0.3189      0.4747      0.4983      0.2759      0.1977 

        SS94a       0.3584      0.5336      0.5602      0.3102      0.2222 

                     HN96b       IS92a       IS94a       LN96a       LN96b 

 

        NS92a       1.0000 

        SS92a       0.3959      1.0000 

        SS94a       0.4450      0.4577      1.0000 

                     NS92a       SS92a       SS94a 
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The Akaike information criteria (AIC) and Schwarz information criteria (SIC) can be used to 

compare non-nested models (for details see Section 10.4). Smaller values of AIC or SIC 

indicate a better fit. The difference between the two criteria is that SIC takes into account 

the number of observations in the data set, and therefore will usually select a more 

parsimonious model than AIC. The Summary table displayed in the output is sorted in 

increasing order based on our selected criterion (SIC). SIC has identified FA (Factor 

analytic, order 1) as the “best model” for yld (SIC = 17524). FA2 (Factor analytic, order 

2), a less parsimonious model, has the smallest AIC.  

The residual variance model and variance-covariance matrix are outputted for the “best 

model”, FA. The residual variance model displays the estimates and standard errors for 

each parameter. In this example, there are eight factor 1 gammas (g_11, g_21, …) and 

eight specific variances (psi_1, psi_2, …), one for each environment. The variance-

covariance matrix is ordered alphabetically on env level names, indexed 1 to 8 

(1=HN96b, 2=IS92a, …). Using this matrix we can identify environments with small and 

large genetic variances, and the explore relationships between environments. For 

example, the intermediate stress environments IS92a (2) and IS94a (3) have genetic 

variances of 21373 and 21860, respectively and a genetic covariance of 12558. This 

corresponds to a genetic correlation of 0.58. A high genetic correlation occurs when all 

genotypes are responding similarly to environmental differences. Conversely, a low 

genetic correlation arises when genotypes react very differently, indicating a strong G×E 

interaction. 

 

4.3 Accounting for within-trial plot variation 

 

In stage I of the two-stage analysis process for modelling MET data, the trait means for 

each genotype are generated separately for each trial (see Chapter 3). The stage II analysis 

should be “weighted” to accommodate both heterogeneity of error variance across trials 

and unequal replication within trials. This is achieved via the quantity eij in Equation 1; 

the error in the data arising from within-trial variation, which is referred to in Genstat as 

the “unit error”. The unit errors are a measure of precision of the trait means and their 

inclusion in G×E analysis can improve genotype predictions when trials within a MET 

have different levels of precision (Welham et al., 2010; Möhring & Piepho, 2009).  

Genstat follows the approach of Smith et al. (2001a) to generate unit errors from raw 

plot data using the Preliminary Single Environment Analysis menu (see Section 3.2 for 
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details). Other weighting schemes have been proposed (see Möhring & Piepho, 2009) but 

are not yet available under the QTL menu. 

A good choice of weights will produce results from a two-stage analysis very similar 

to those from a one-stage analysis, in which plot data are analysed instead of means (see 

Smith et al., (2005) for a description of the one-stage approach). There are theoretical 

advantages of the one-stage analysis over the two-stage analysis (Welham et al., 2010), 

however the two-stage approach is logistically and computationally much easier to 

manage. 

In this section we illustrate a weighted stage II analysis using trait means and unit 

errors from the 4 environment CIMMYT spring wheat trials (Section 1.3.2) held in 

Genstat spreadsheet. SxBmeans.GSH. Open the Select Best Variance-covariance Model 

menu (see Figure 4.3) and set Quantitative trait means: to yield, Genotype factor: to 

genotype and Environment factor: to environment. We will select all available 

variance-covariance models, and compare their goodness of fit using the Schwarz 

information criterion (SIC). As the MET comprises < 5 environments, the FA2 (Factor 

analytic, order 2) model is unavailable.  

To include unit errors, eij, in the analysis open the Select Variance-covariance Model 

Options window and check Include unit error: (Figure 4.5). If the unit error data structure 

has been stored in the QTL Data Space it will be automatically entered into the input field.  

 

 
Figure 4.5: Using the Select Best Variance-covariance Model Options window to include unit 

errors (ue_yield), representing uncertainty in trait means (yield), in the G×E analysis of the 

CIMMYT spring wheat trials. 
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The output from the weighted analysis of yield is shown below: 
 

Summary 

======= 

 

Trait: yield 

 

          Model         AIC         SIC    Deviance NParameters 

             CS        5231        5237        5227           2 

        OUTSIDE        5224        5239        5214           5 

            HCS        5226        5241        5216           5 

             FA        5224        5249        5208           8 

   UNSTRUCTURED        5225        5256        5205          10 

       IDENTITY        5515        5518        5513           1 

       DIAGONAL        5513        5525        5505           4 

 

Best model: CS (on basis of criterion SIC) 

 

 

Estimated variance components 

----------------------------- 

 

Random term               component        s.e. 

genotype                    991.341     127.263 

genotype.environment        334.164      39.076 

 

 

Residual variance model 

----------------------- 

 

Term                           Model(order)  Parameter        Estimate      s.e. 

qtl_unitfactor                 Identity      Sigma2              1.000     fixed 

 

 

Correlation matrix: 

       DRIP05      1.0000 

       HEAT06      0.5798      1.0000 

       IRRI06      0.5488      0.5860      1.0000 

       HEAT05      0.6154      0.6571      0.6220      1.0000 

                   DRIP05      HEAT06      IRRI06      HEAT05 

 

Schwarz information criteria (SIC) selects the CS (Compound Symmetry) variance-

covariance model, which generates a uniform covariance structure, with equal variances 

and covariances across environments. That is, the variation between genotype effects is 

the same within each environment, and the covariance across environments is the same 

for every pair of environments.  
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We can compare this to an unweighted analysis, by unchecking Include unit error:. In 

this case CS is still selected as the best variance-covariance model. However, when the 

information on precision from the stage I analysis is not used, the residual variance term 

cannot reliably be separated from any uncorrelated component of the G×E effects, uij. 

This is equivalent to fitting a main effects model, with environment as fixed and 

genotype as random, and allocating their interaction to the residual term.  

 

Summary 

======= 

 

Trait: yield 

 

          Model         AIC         SIC    Deviance NParameters 

             CS        5221        5227        5217           2 

        OUTSIDE        5224        5240        5214           5 

            HCS        5227        5242        5217           5 

             FA        5225        5250        5209           8 

   UNSTRUCTURED        5225        5256        5205          10 

       IDENTITY        5510        5513        5508           1 

       DIAGONAL        5513        5525        5505           4 

 

Best model: CS (on basis of criterion SIC) 

 

 

Estimated variance components 

----------------------------- 

 

Random term               component        s.e. 

genotype                      960.4       123.5 

 

 

Residual variance model 

----------------------- 

 

Term                           Model(order)  Parameter        Estimate      s.e. 

genotype.environment           Identity      Sigma2              618.4      39.4 

 

 

Correlation matrix: 

       DRIP05      1.0000 

       HEAT06      0.6083      1.0000 

       IRRI06      0.6083      0.6083      1.0000 

       HEAT05      0.6083      0.6083      0.6083      1.0000 

                   DRIP05      HEAT06      IRRI06      HEAT05 
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4.4 Exploratory methods for G×E interaction 

 

Genstat provides two descriptive tools for exploring the G×E interaction; AMMI models 

and GGE biplots. They are accessed by selecting the Phenotypic Data option under the 

Data Exploration menu. We’ll look at both of these in turn. 

 

 AMMI 

MET data can be classified by two factors (genotype and environment). An Additive 

Main Effects and Multiplicative Interaction (AMMI) model is a hybrid analysis that 

incorporates both the additive and multiplicative components of the two-way MET data 

structure. A detailed overview of the AMMI methodology can be found in Crossa and 

Cornelius (2002). In brief, the AMMI analysis extracts genotype and environment main 

effects (i.e. the additive component) using analysis of variance (ANOVA). Next, principal 

components analysis (PCA) is applied to the ANOVA residuals, which include the G×E 

interaction (i.e. the multiplicative component). The PCA partitions the G×E interaction 

into IPCA (I for interaction) components. The first component explains the most variation 

in the G×E interaction, followed by the second, and so on. Each IPCA component is the 

product of a genotypic and an environmental score. These scores can be used to construct 

biplots (Gower and Hand, 1996), a powerful graphical representation that help us explore 

the G×E interaction. 

Genstat’s AMMI procedure accommodates both raw plot (unit) data and trait means. 

However, the data must be balanced. That is, the same genotypes at each environment 

and, in the case of the plot data, the same number of replicates for each genotype by 

environment combination. In addition, there must be no missing values. When analysing 

plot data with an unbalanced or complicated randomization structure, it is recommended 

that you form the genotype by environment trait means first (see Section 3.2) and supply 

these instead.  

We shall demonstrate AMMI modelling using yld trait means from the CIMMYT 

maize trials (Section 1.3.2) held in file F2_maize_pheno.csv. A detailed discussion of 

this example can be found in Malosetti et al. (2013).  

The AMMI menu (Figure 4.6) can be accessed via Stats | QTLs (Linkage/Association) | 

Data Exploration | Phenotypic Data | AMMI; or, by using the Explore button in the QTL Data 

View. The Data:, Genotypes:, and Environments: fields are automatically filled using data in 

the QTL Data Space. Set the Data: field to yld. 
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Figure 4.6: AMMI window for yld trait means from the F2maize_pheno.csv data set. 

 

The Options button opens a window that allows you to select the output and graphs to 

be generated by an AMMI analysis (Figure 4.7).  

 

 
Figure 4.7: AMMI Options window. 

 

We select to display the ANOVA table, and to graph Genotype and environment means 

against IPCA scores and the AMMI biplot of IPCA scores. The set of IPCA scores to plot are 

specified using X-dimension: and Y-dimension: fields. Here, we request the first set is 

plotted on the x-axis, and the second set on the y-axis. The Number of IPCA scores:, which 
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defines the number of IPCA components (or sets of genotypic and environmental scores) 

used to partition the G×E interaction, defaults to 2. The Scaling: option controls the scaling 

used for the biplot. Genotype-focused scaling (Scaling: = Genotype) is best suited to 

displaying the inter-relationships among genotypes, whereas the environment-focused 

scaling (Scaling: = Environment) is better suited to displaying the inter-relationships among 

environments. The Symmetric scaling method is an intermediate between environment-

focused and genotype-focused scaling.  

Once the analysis is run the Save button (Figure 4.6) is activated allowing the genotype 

and environment IPCA scores, and the fitted values and residuals from the AMMI model 

to be saved. 

The ANOVA table, which summaries the contribution of each IPCA component to the 

interaction term, is given below. We have partitioned the interaction term into two 

components (IPCA 1 and IPCA 2). Both are highly significant (p-value<0.001), 

explaining 29.8% (5451796/18296997×100%) and 21.3% 

(3888148/18296997×100%) of the G×E interaction sum of squares, respectively. 

 

AMMI Analysis 

============= 

 

 

ANOVA table for AMMI model 

-------------------------- 

 

 

Source              d.f.        s.s.        m.s.        v.r.        F pr 

Genotypes            210    13821018       65814        5.29      <0.001 

Environments           7   127771687    18253098     1466.47      <0.001 

Interactions        1470    18296997       12447 

  IPCA 1             216     5451796       25240        2.93      <0.001 

  IPCA 2             214     3888148       18169        2.11      <0.001 

  Residuals         1040     8957053        8613 

 

A biplot helps us to visualize the G×E interaction, and to identify genotypes with broad 

(or specific) adaptability and environments which elicit strong (or weak) interactive 

forces. The biplot for the yld data, using symmetric scaling and the first two IPCA 

components, is given in Figure 4.8. Genotypes are represented by green crosses (×), and 

environments by blue pluses (+), with vectors connecting the environment scores with 

the origin. Genotypes that cluster together behave similarly across the environments (e.g. 

G061 and G047), whilst environments that cluster together influence the genotypes in a 
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similar way (e.g. LN96a and LN96b). The angle between the environment vectors 

provides further information on the correlation between environments, where; 

 an acute angle indicates positive correlation (e.g. LN96a and LN96b)  

 an obtuse angle indicates negative correlation (e.g. HN96b and IS92a) 

 a right angle indicates no correlation (e.g. HN96b and NS92a) 

 

 

Figure 4.8: Biplot from the AMMI model for yld. 

 

The biplot’s origin represents the overall mean phenotypic response, in our case of 

yld. The position of a genotype, or environment, relative to the origin provides insights 

into the nature of the G×E interaction. In general, genotypes which are near the origin are 

insensitive to environmental interactions, i.e. are broadly adapted (whether good or poor 

performance depends on the genotype main effect). Conversely, genotypes far from the 

origin are sensitive to environmental interactions, i.e. are specifically adapted (e.g. G176). 

Likewise, environments near the origin (as indicated by a short vector) elicit only weak 
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interactive forces (e.g. SS94a) whereas those far from the origin elicit strong interactive 

forces (e.g. NS92a).  

As the IPCA axes explain a portion of the G×E interaction, some caution must be taken 

when interpreting the biplot. For example, a genotype showing a particularly unique 

interaction with environment will plot at the origin if it is explained by a higher order 

IPCA axis. 

Plots of the genotype and environment means against the first (Figure 4.9a) and second 

(Figure 4.9b) IPCA scores are useful for identifying genotypes that have broad and/or 

specific adaptability across the environments studied. To interpret these plots we examine 

differences along the x-axis, which indicate differences in the main (additive effects), and 

distances from zero on the y-axis, which indicate the strength of the G×E interaction. 

Genotype G041 stands out in Figure 4.9a. This genotype has a low mean yld, but 

interacts strongly with the environments. A positive interaction (i.e. improved relative 

performance) is indicated by a genotype and an environment having the same sign on the 

IPCA axis (y-axis). Conversely, different signs imply a negative interaction (i.e. reduced 

relative performance). Genotype G041 has a different sign to environment NS92a and the 

same sign as environment LN96b (Figure 4.9a). This indicates that it performs relatively 

poorly in environment NS92a but relatively well in environment LN96b. 

 

a)

 

b)

 

Figure 4.9: Plot of the genotype and environment means against the a) first and b) second IPCA 

scores. 
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 GGE biplot 

Genotypic main effect plus Genotype-by-Environment interaction (GGE) biplots are a 

useful tool for assessing the phenotypic performance of genotypes in different 

environments. The GGE biplot, a modification of the AMMI model, provides information 

on total genetic variation by approximating the joint effect of the genotype and G×E 

interaction. In contrast, AMMI biplots, discussed in Section 4.4.1, approximate only the 

G×E interaction component of genetic variation. In brief, the GGE biplot is based on a 

standard PCA of the environment-centred trait means. The GGE biplot summarizes the 

genotype plus G×E variation using scores from the PCA. A comprehensive description 

of the methodology can be found in Yan and Kang (2003). The interpretation of the GGE 

biplot is very similar to the AMMI biplot. However, now the genotypes are distributed 

according to their overall phenotypic performance in each environment, rather than by 

the size of the G×E interaction. 

The GGE biplot menu can be accessed via Stats | QTLs (Linkage/Association) | Data 

Exploration | Phenotypic Data | GGE Biplot; or, by using the Explore button in the QTL Data 

View. The analysis uses G×E trait means (refer to Section 3.2 for information on how to 

generate these). We demonstrate the use of GGE biplots using trait means from CIMMYT 

maize trials (Section 1.3.2) held in file F2_maize_pheno.csv.  

The GGE Biplot menu is automatically populated using available data in the QTL Data 

Space (Figure 4.10). We choose to analyse yld. The Type of plot: field defaults to Scatter 

plot, which is the standard PCA biplot.  

 

 

Figure 4.10: GGE Biplot window for yld trait means from F2maize_pheno.csv. 
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The Options button opens a menu window were additional options and settings can be 

specified (Figure 4.11). The Scaling option defaults to Environment. This is recommended, 

together with Connect environment scores with origin, for displaying the inter-relationship 

among environments. Complete information on all options is available by clicking in the 

help icon ( ). 

 

 

Figure 4.11: The GGE Biplots Options window. 

 

The features of a GGE biplot (Figure 4.12) have a similar interpretation to that of an 

AMMI biplot (Section 4.4.1). For example, genotypes (or environments) that are alike 

cluster together. The key difference being, the genotypic scores now jointly describe both 

the genotypic main effect and the G×E interaction effect. Therefore, the highest yielding 
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genotypes, such as G019, are found on the right-hand side of the biplot, and the lowest 

yielding, such as G118, on the left.  

 

 

Figure 4.12: GGE biplot for yld. 

 

Additional information, that may help elucidate the genotype and environment 

relationships, can be added to Figure 4.12 by changing the Type of plot:, Method, First 

environment: and Second environment: fields in the GGE Biplot menu (Figure 4.10). Detailed 

information on these options can be found in the GGE biplot help (accessed via the help 

icon ) and in the documentation for the GGEBIPLOT procedure. The different types of 

GGE biplot are: 

 Scatter plot - plots the genotype and environment scores.  

 Ranking plot - shows best performing genotypes (or environments) in a specific 

environment (or genotype).  

 Comparison - compares the performance of the environments (or genotypes) with 

that of an “ideal” environment (or genotype).  

 Joint - compares two environments (or genotypes) simultaneously.  
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 Centred scatter plot - compares the performance of the genotypes (or environments) 

in two environments (or genotypes).  

For example, the GGE biplot used to illustrate which genotypes perform the best (i.e. 

highest yielding) in environment NS92a is generated by setting Type of plot: to Ranking 

plot and specifying the environment of interest (either its level, or label within single 

quotation marks) in the First environment: field (Figure 4.13). This draws a biplot axis 

through our specified environment (NS92a) together with ranking lines to show the best 

performing genotypes in this environment (Figure 4.14). 

 

 

Figure 4.13: Menu options to produce a ranking biplot for environment NS92a. 

 

Using Figure 4.14 we can readily compare the performances of all genotypes within 

environment NS92a. The genotypes are “projected” onto the biplot axis (which runs 

along the vector for NS92a) using perpendicular lines. The best performing genotypes in 

environment NS92a are those whose projections onto the biplot axis are closest to the 

score for NS92a. By default the ranking lines are drawn to be perpendicular to the biplot 

axis (as in Figure 4.14), but you can project lines from the genotypes to the biplot axis by 

setting Ranking lines to Projected onto axis in the GGE Biplot Options window (see Figure 

4.11). The best performing genotypes in environment NS92a are G019, G055, G103, 

G192 and G091. The poorest performing genotypes are G118, G041 and G112. 
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Figure 4.14: Ranking biplot of genotypes in environment NS92a. 
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5 Construction of genetic linkage maps  

 

QTL analysis requires that a genetic linkage map is available for the population under 

study. If that is not the case, Genstat provides facilities for constructing a map from a set 

of marker scores. These facilities are accessed via Stats | QTLs (Linkage/Association) | Map 

Construction (Figure 5.1); or, by using the Map construction button in the QTL Data View. 

 

 

Figure 5.1: Map construction facilities. 

 

5.1 Number of recombinations 

 

The Calculate Number of Recombinations menu (Figure 5.2) is used to estimate the number 

of recombinations and the recombination frequencies between markers. Input fields 

Marker genotype scores:, Marker names: and Parental information: are automatically 

populated using available structures in the QTL Data Space. The appropriate population 

type (F2, DH1, BC1, RILn or CP) needs to be specified in the Type of population: field.  

The number of recombinations can be estimated using the Two point method (see 

Maliepaard et al., 1997), or, when marker order is available, the Multi-point method (see 

Lander & Green, 1987). If Multi-point is checked, the field Initial order of markers: activates 

where a variate containing the marker order is supplied. 

Clicking on the Store button opens a window allowing you to save results from 

analysis. (For the two point method: expected number of recombinations between 

markers and estimated recombination frequencies. For the multi-point method: position 

of markers, inheritance vectors and expected number of recombinations of the 
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genotypes.) After checking the appropriate boxes, names for the saved data structures 

need to be specified in the corresponding In: fields.  

The Options button opens a window where you can specify the output to produce. For 

the two point method, you can check Increase number of recombinations by 0.5 for each 

missing value to impose a penalty for missing data. The number of recombinations is then 

increased by 0.5 recombination per informative meiosis for each missing marker score. 

 

 

Figure 5.2: Calculate Number of Recombinations menu. 

 

5.2 Formation of linkage groups 

 

The Form Linkage Groups menu (Figure 5.3) is used to form linkage groups from marker 

data. The population (F2, DH1, BC1, RILn or CP) is specified in the field Type of 

population:. The other input fields are automatically populated using available data in the 

QTL Data Space.  

The analysis first calculates recombination frequencies, using the two point method, 

then linkage groups are formed using depth-first search from a symmetric matrix of links. 

The threshold for the recombination frequency at which markers are said to be linked 

(default 0.2) can be specified in the Form Linkage Groups Options menu (click on the 

Options button to open the options menu).  
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In the Form Linkage Groups Options menu you can also request a Summary of the number 

of markers in each linkage group, and specify whether to Increase number of recombinations 

by 0.5 for each missing value.  

 

Figure 5.3: Form Linkage Groups menu. 

 

5.3 Construct genetic linkage maps 

 

The Construct a Linkage Map menu (Figure 5.4) is used to calculate the order and position 

of the markers on a chromosome (or linkage group). Using data available from the QTL 

Data Space, the Marker genotype scores:, Marker names: Genotype labels: and Parental 

information: fields are automatically populated. The population type (F2, DH1, BC1, RILn 

or CP) must be specified in the Type of population: field. 
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Figure 5.4: Construct a Linkage Map menu. 

All markers are assumed to belong to the same linkage group unless a factor defining 

the linkage groups for each marker is specified in Linkage groups for markers:. If this is set, 

the marker positions are calculated within each level of the linkage group factor. Further, 

the Subset linkage groups: field can be used define a subset of linkage groups to map. 

The analysis calculates the order of markers using simulated annealing in conjunction 

with spatial clustering; either spatial sampling or optimization (for more information see 

Lander & Green, 1987; Jensen et al., 2001; Jensen, 2005). Spatial clustering is used to 

obtain a framework map: this reduces the size of the optimization problem and leads to a 

reduction of the effects of errors on the marker ordering. You can select the type of spatial 

clustering used to obtain a framework map in the Construct a Linkage Map Options window 

(Figure 5.5), launched by clicking the Options button.  
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Figure 5.5: Options for constructing a linkage map. 

 

The Construct a Linkage Map Options menu also allows you to request summary 

information (i.e. number of linkage groups and the minimum, mean and maximum of the 

positions per linkage group) and a plot of the genetic map.  

Clicking on the Store button opens a window allowing you to save results from 

analysis.   
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6 Linkage analysis: inbred population with a single 

trait evaluated at a single site 

 

Linkage analysis is a method for detecting quantitative trait loci (QTLs). It tests whether 

variation at the molecular level is related to phenotypic variation in a specifically designed 

segregating population.  

Most traits plant breeders work with are quantitative. What complicates the breeding 

task is that trait variation is the result of a large number of QTLs, each one with a minor 

effect. The objective of linkage analysis is to dissect the complexity of quantitative traits 

by identifying the individual QTLs. A typical QTL experiment consists of developing a 

segregating population (F2, double haploid, back-cross, recombinant inbred lines, back-

cross inbred lines or F1 cross-pollinating) and finding statistical associations between the 

observed phenotypic variation and variation at the DNA level (measured using molecular 

markers).  

In this chapter, linkage analysis is illustrated for an inbred population with a single 

trait evaluated at a single site (i.e. in a single “environment”). Linkage analysis for more 

complex data sets will be described in Chapters 7 and 8. 

 

In this chapter you will learn how to detect QTLs in a single trait - single environment 

data set, including how to: 

 calculate genetic predictors for use in linkage analysis (Section 6.1.1) 

 perform marker regression (Section 6.1.2.1)  

 perform a simple interval mapping (SIM) scan (Section 6.1.2.2) 

 select co-factors and perform a composite interval mapping (CIM) scan (Section 

6.1.2.3) 

 determine a final multi-QTL model (Section 6.1.2.4) 

 correct for multiple comparisons (Section 6.1.4) 

  



6.1  QTL linkage analysis 

123 

 

6.1 QTL linkage analysis 

 

The aim of linkage analysis is to identify QTLs by linking phenotypic variation with 

molecular variation. The term “linkage” arises from the proximity, or degree of linkage, 

between the marker and the detected QTL.  

Conceptually we can think of QTL detection as a model selection problem, with the 

purpose of selecting a model that describes the phenotypic response in terms of QTL 

effects. The process of detecting QTLs can be divided into two major parts: a) a putative 

QTL detection step, where the genome is searched for candidate QTLs, and b) selection 

of the final multi-QTL model from the set of candidate QTLs.  

The Genstat QTL menu is tailored for detecting QTLs in bi-parental plant breeding 

populations. It is designed to guide the user through a step-by-step strategy for QTL 

detection. These steps comprise of: 

1) calculating genetic predictors, which are used as explanatory variables in the QTL 

models (Section 6.1.1) 

2) an initial genome-wide scan by marker regression or simple interval mapping 

(SIM) to obtain candidate QTL positions (Sections 6.1.2.1 and 6.1.2.2, 

respectively)  

3) one or more rounds of composite interval mapping (CIM), in which co-factors 

correct for QTLs that segregate elsewhere in the genome (Section 6.1.2.3) 

4) fitting a final multi-QTL model, usually following back-selection from a set of 

candidate QTLs, to get a final set of estimated QTL effects (Section 6.1.2.4). 

This chapter illustrates the QTL detection process for the simplest type of data: a single 

trait, single environment data set. Yield data from the Steptoe-Morex barley trial 

(introduced in Section 1.3.1) is used as an example throughout.  

 

 Calculation of genetic predictors 

Prior to QTL analysis, genetic predictors are calculated to be used as explanatory 

variables in the QTL models. Genetic predictors are constructed from molecular marker 

information, and QTLs are identified by genetic predictors that have some explanatory 

power for the phenotypic trait of interest.  

In Genstat, genetic predictors can be formed from allele frequencies. For example, the 

“additive” genetic predictor takes the value -1 when an individual is homozygous like 

parent 1 (P1P1), 0 when heterozygous (P1P2), and 1 when homozygous like parent 2 (P2P2). 

The slope from a simple linear regression of the trait means on the additive genetic 
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predictor represents the effect of replacing an allele from parent 1 (P1) with an allele from 

parent 2 (P2), known as an “additive genetic effect”. Deviations from additivity can be 

explored by forming a “dominance” genetic predictor. Here, the predictor takes the value 

0 when the individual is homozygous (i.e. P1P1 or P2P2), and value 1 when heterozygous 

(P1P2). As by definition dominance effects are deviations from additivity, testing for 

dominance is always done conditional on the additive effect being present in the model. 

For cross-pollinated populations, an additive genetic predictor for the 2nd parent can also 

be formed.  

In practice, marker data frequently contains missing values, especially when the 

markers are dominant. Constructing genetic predictors for incomplete marker data, or at 

genomic positions in between marker loci, is more complex (see Jiang and Zeng, 1997). 

The methodology uses information from nearby markers to estimate the probability an 

individual is of a particular genotype. This probability depends on the observed genotypes 

at neighbouring markers and the distance from those markers. Genstat uses a Hidden 

Markov model to estimate these probabilities (which are known as “conditional genotypic 

probabilities”). The estimated probabilities are then used to obtain genetic predictors at 

genomic positions where no (or partial) marker information is available.  

We will calculate genetic predictors for the Steptoe-Morex barley trial (Section 1.3.1) 

using Genstat. The marker and map information for this double haploid population are 

held in Flapjack files SxM_geno.txt and SxM_map.txt, respectively. Import and 

inspect the marker and map data (referring to Sections 2.1.2 and 2.4.2). Remember to 

specify the population as double-haploid (DH1). 

On importing the genotypic data, Genstat automatically provides some summary 

information. This informs us that the Steptoe-Morex genotypic data set is from a double 

haploid population (DH1) containing 150 genotypes and 116 markers spread over 7 

linkage groups. The number of markers per linkage group and the length of each linkage 

group is also provided.  

 
Loading QTL data 

---------------- 

 

Catalogue of files: 

 D:/Program Files/Gen18Ed/Data/SxM_geno.txt 

 D:/Program Files/Gen18Ed/Data/SxM_map.txt 

 

Population:               DH1 

Number of genotypes:      150 

Number of markers:        116 

Number of linkage groups: 7 
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Linkage group Number of markers      Length 

            1                16       170.1 

            2                17       183.1 

            3                14       188.7 

            4                12       167.0 

            5                29       150.8 

            6                13        95.5 

            7                15       186.5 

 

Parent IDs: Morex, Steptoe 

 

The quality of the genotypic data, including the proportion and pattern of missing 

marker data, can be explored using the Data Exploration menu, as described in Section 

2.4.2. We’ll use the Stats | QTLs (Linkage/Association) | Data Exploration | Genotypic Data | 

Summary Statistics for Markers menu to output genotypes and markers with >10% missing 

values. 

 

Missing values 

-------------- 

 

 

There are 364 scores missing. This is 2.092% of the 17400 scores. 

 

 

There are 60 markers with missing values. This is 51.72% of the 116 markers. 

 

The 4 markers with more than 10% missing values over the 150 genotypes are: 

 

                                     Number of      Percentage 

  Marker Chromosome   Position  missing values  missing values 

 abc310b          1      120.8              16            10.7 

 bcd402b          4       33.7              17            11.3 

  ksuh11          4      168.4              26            17.3 

    aga6          5        0.0              67            44.7 

 

 

There are 120 genotypes with missing values. This is 80% of the 150 genotypes. 

 

The 2 genotypes with more than 10% missing values over the 116 markers are: 

 

               Number of      Percentage 

Genotype  missing values  missing values 

   dh011              13            11.2 

   dh012              12            10.3 
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Overall, 2% of the marker scores are missing. Four markers (abc310b, bcd402b, 

ksuh11, aga6) and two genotypes (dh011, dh012) have more than 10% missing. 

Marker aga6, in linkage group (chromosome) 5, has a very large number of missing 

values (45%) and perhaps should be omitted from the analysis.  

The Genstat menu to calculate genetic predictors (Figure 6.1) can be accessed by Stats 

| QTLs (Linkage/Association) | Genotypic Analysis | Calculate Genetic Predictors; or, via the 

QTL Data View from Genotypic analysis | Calculate Genetic Predictors. 

 

 

Figure 6.1: Menu and options for calculating genetic predictors. 
 

Genstat will automatically populate the input fields from information in the QTL Data 

Space, and provide default names for saving the genetic predictors and their associated 

information. The fields greyed out in the Save Genetic Predictors and associated information 

box are unavailable for the Type of population: selected. For F2 populations, dominance 

effects can be obtained. For cross-pollinating (CP) populations, dominance effects and 

additive effects for the 2nd parent can be calculated.  

Clicking on Options opens a window where you can specify the maximum step size 

between consecutive genetic predictors along the genome (Figure 6.1). The default of 

106cM calculates genetic predictors at the marker positions only. Setting the maximum 
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step size to some lesser value will calculate genetic predictors along the genome such that 

the gap between any two consecutive predictors is less than this value. Using a maximum 

step size of 10cM as an example, if the distance between two consecutive genetic 

predictors is larger than 10cM, a new evaluation position will be created between them. 

The process is repeated until no gap of 10cM or more remains. For now, we will retain 

the default step size of 106cM. 

Checking Save genetic predictors into QTL data space makes the names of the genetic 

predictor data structures available in subsequent QTL menus. Click OK and then Run to 

calculate the genetic predictors. Several new data structures will now appear in the 

Genetic predictors folder on the QTL Data View. To view the additive genetic predictors 

right click on gp_additive and select Create Spreadsheet (Figure 6.2).  
 

 

Figure 6.2: Creating a spreadsheet to display the additive genetic predictors. 

 

In Figure 6.3 is an excerpt of the Steptoe-Morex marker scores. Two scores are missing 

for the second marker (glx); for genotype dh013 both neighbouring markers (plc and 
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wg789a) have a score of 1 (homozygous like parent 1), whilst for genotype dh014 the 

neighbouring markers, plc and wg789a, have scores of 2 and 1, respectively. 

 

LinkageGroup 1 1 1 

Distance (cM) 0 18.7 24.1 

    

Marker plc glx wg789a 

dh012 1 1 1 

dh013 1 - 1 

dh014 2 - 1 

dh015 1 2 1 

Figure 6.3: Steptoe-Morex marker scores for 4 genotypes from the first three markers on linkage 

group 1. A single code is used for homozygotes, where 1 = homozygous like parent 1, 2 = 

homozygous like parent 2. Missing values are indicated by -.  

 

The values of the additive genetic predictors (gp_additive) corresponding to the 

marker data in Figure 6.3 are given in Figure 6.4. Homozygotes like parent 1 have been 

assigned a value of -1, homozygotes like parent 2 a value of 1, and missing values have 

been estimated. These estimates are produced using complex methodology based on 

estimating recombination frequencies with neighbouring markers (see Jiang and Zeng, 

1997). However, intuitively, for genotype dh013, the estimate of 

gp_additive[‘glx’], -0.980, is close to -1, the value of both neighbouring genetic 

predictors, gp_additive[‘plc’] and gp_additive[‘wg789a’]. In contrast, 

dh014 is estimated at -0.548. The genetic predictor to its left (gp_additive[‘plc’]) 

has a value of 1, and to its right (gp_additive[‘wg789a’]) a value of -1. As the 

marker on the right is much closer (5.4cM away) than the one of the left (18.7cM away) 

the estimate of gp_additive[‘glx’] is shifted from 0, the midpoint, towards to -1, 

the value of the closer neighbouring genetic predictor.  

 

 

Figure 6.4: Excerpt from the spreadsheet of additive genetic predictors constructed from the 

Steptoe-Morex marker data. 
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Genetic predictors can be calculated for F2, double haploid (DH1), back-cross (BC1), 

recombinant inbred (RILn), back-cross inbred (BCxSY) and cross-pollinating (CP) 

populations. For a RILn population, the number of generations is supplied using the 

Number of generations: option in the Calculate Genetic Predictors menu (Figure 6.1). For a 

BCxSy population, the number of back-crosses and selfings is supplied using the Number 

of backcrosses: and Number of selfings: options, respectively.  

 

 Models for detecting QTLs 

After calculating the genetic predictors, we can start building the QTL model. Essentially 

this involves finding a set of genetic predictors that best describe the phenotypic variation. 

The search for QTLs is done by testing the presence of a QTL at different positions on 

the chromosomes (as defined by the maximum step size along the genome).  

Several linear regression methods have been proposed for QTL detection (e.g. Lander 

and Botstein, 1989; Haley and Knott, 1992), and these form the basis of the procedures 

in the Genstat QTL system. For a review see Collard et al. (2005). In Genstat, models for 

QTL detection are implemented in the mixed model framework with each genetic 

predictor (a potential QTL) tested as a fixed effect. There are three putative QTL detection 

methods available in the menu. In increasing complexity they are: marker regression, 

simple interval mapping (SIM) and composite interval mapping (CIM). We describe these 

in turn.  

QTL analysis in Genstat requires a single phenotypic value for each genotype (or line) 

in each environment. These values will usually be predicted trait means obtained from a 

preliminary analysis of each trial (as described in Chapter 3). 

Trait means from the Steptoe-Morex trial are held in file SxM_pheno.csv. We’ll use 

the quantitative trait yield to illustrate QTL analysis in Genstat. Import the phenotypic 

data set following Section 2.1.1.2. Before QTL analysis, the quality of the phenotypic 

data should be assessed using the Data Exploration menu (see Section 2.4.1). Of particular 

interest is the amount of phenotypic variation in the population and the presence of any 

suspicious observations (i.e. outliers). For this example, there are no missing values for 

yield. The mean yield is 6.9 ton/ha with phenotypic variance 0.48 (ton/ha)2. A 

histogram and boxplot of yield indicate the data are Normally distributed and doesn’t 

contain any extreme outliers. 
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6.1.2.1 Marker regression 

In marker regression (also known as marker based QTL detection), phenotype is regressed 

on the genetic predictor separately for each marker position. The model for a single trait, 

single environment data set can be expressed as:  

𝑦𝑖 = 𝜇 + 𝛼𝑥𝑖 + 𝜀𝑖 + 𝑒𝑖  Equation 1 

where 

yi  is the trait mean for genotype i  

µ is the overall mean 

α is the QTL effect at the marker position being tested 

xi  is the genetic predictor for genotype i at the marker position being tested  

i  is the genetic residual for genotype i (or residual if unit errors are omitted) 

ei is the unit error for genotype i. 

The model is fitted using REML, with Genotype fitted as random (representing i) 

and the QTL effect fitted as fixed. The i are assumed to follow a Normal distribution 

with mean 0 and variance σ2.  

The unit error, ei, represents the uncertainty on the trait mean (see Section 3.2). 

However, if the unit error is unknown, ei and the genetic residual, i, cannot be separately 

estimated. We therefore omit the term ei from the model, which means i now represents 

the residual for genotype i. 

Equation 1 is readily extended to include dominance effects (for F2 and CP 

populations) and additive effects for the 2nd parent (for CP populations). See Section 6.2. 

At each marker position the model is fitted and the QTL effect (α) tested using a Wald 

test (Section 10.6; Searle et al., 1992; Verbeke and Molenberghs, 2000). The associated 

probability value (on the -log10 scale) is plotted against the position on the chromosome 

to produce a profile plot (also known as a Manhattan plot) used for interpretation. 

The Single Trait Linkage Analysis (Single Environment) window (Figure 6.5) can be 

accessed by either: 

 Stats | QTLs (Linkage/Association) | QTL Analysis | Single Trait Linkage Analysis (Single 

Environment); or, 

 in the QTL Data View via the shortcut QTL analysis | Single Trait Linkage Analysis (Single 

Environment).  

Genstat will automatically populate the input fields of this window using data from the 

QTL Data Space. 
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Figure 6.5: Menu for performing a single trait, single environment QTL analysis on the 

quantitative trait yield from the double haploid Steptoe-Morex population. 

 

To perform marker regression, we use only genetic predictors calculated at marker 

positions. This is achieved from the Single Trait Linkage Analysis (Single Environment) 

window either by: 

 setting the Step size to 106 (the default); or,  

 using Specify predictor to select the genetic predictors calculated at markers positions 

in Section 6.1.1, gp_additive (Figure 6.6). The fields in the Genetic Predictors and 

Associated Information window are automatically filled using data from the QTL Data 

Space. As the Steptoe-Morex population is double haploid, the fields for Additive 

effects 2nd parent: and Dominance effects: are unavailable. 
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Figure 6.6: Window activated by Specify predictors, used to supply genetic predictors and 

associated information for a QTL analysis. 

 

Settings for the QTL analysis can be modified by clicking the Options button (see 

Figure 6.7). The default options are to display a summary of the QTLs retained in the 

model, produce monitoring output detailing the progress of the analysis, and to produce 

a profile plot from the Wald tests of the QTL effects.  

Genstat’s QTL detection methods necessitate conducting multiple tests along the 

genome. The Threshold box specifies the method used to adjust for multiple comparisons 

(for details, see Section 6.1.4). By default the Li and Ji (2005) method is used with an 

overall significance level of 0.05.  

If available unit errors should be included in the analysis using the option Include unit 

errors: (see Section 3.2). The other options will be explained in more detail as they become 

relevant. Detailed information on all options can be accessed via the help icon ( ). Click 

OK to close the Linkage Analysis Options window. 
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Figure 6.7: QTL Linkage Analysis Options window. 

 

Marker regression can now be performed by clicking the Initial Scan (SIM) button on 

the Single Trait Linkage Analysis (Single Environment) window (Figure 6.5). The output from 

this analysis includes a summary table containing the significant genetic predictors, the 

subset of these identified as QTL candidates, and a profile plot (Figure 6.8).  

 

Summary 

======= 

 

Trait: yield 

------------ 

 

The following loci have a test statistic larger than THRESHOLD=3.049 

 

The test statistic is based on 1 set of predictors 
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       Locus     IdLocus Chromosome   Position  -Log10(P) 

          18       chs1b          2       16.1       6.52 

          19        rbcs          2       27.2       5.59 

          20        abg2          2       41.2       6.52 

          21      abg459          2       47.3       4.43 

          37     abg703a          3       83.6       3.14 

         105        rrn2          7       48.2       3.61 

         106        ltp1          7       52.8       3.35 

         107         ale          7       68.2       8.22 

         108      abc302          7       78.2       6.93 

         109      cdo57b          7       92.2       4.29 

 

 

Selection of QTL candidates 

=========================== 

 

The following candidates have been selected 

 

     Locus   IdLocus  Chromosome    Position 

        18     chs1b           2        16.1 

        37   abg703a           3        83.6 

       107       ale           7        68.2 

 

The profile plot displays p-values from Wald tests (on the -log10 scale) of the QTL 

effects along the chromosomes (Figure 6.8). This is analogous to the logarithm of odds 

ratio (LOD) profile or Manhattan plot produced in other QTL software. The red horizontal 

line represents the threshold level, above which the null hypothesis of no QTL effect is 

rejected (see Section 6.1.4). Each chromosome (or linkage group) is depicted by a 

different colour. In the lower panel, the location of the QTL effects exceeding threshold 

are shown. The point is coloured according to which parent provided the allele for a high 

yield (i.e. the superior allele). The intensity of the colour represents the magnitude of 

the QTL effect.  

Of the 116 genetic predictors (i.e. markers), 10 have an associated probability value 

(on the -log10 scale) larger than the threshold, in this case 3.049. To identify candidate 

QTLs, Genstat selects peaks in the profile plot (Figure 6.8) that meet the threshold and 

the minimum separation distance criteria set in the options (Figure 6.7). We’ve accepted 

the default, which sets Minimum separation for selected QTLs: to 30cM. If two peaks are 

closer together than 30cM then only the one with the highest peak will be taken forward 

as a candidate position. Of the 10 genetic predictors that meet threshold, only 3 are more 

than 30cM apart and therefore identified as candidate QTLs (chs1b, abg703a, ale). By 

default, candidate QTLs are saved to qtl_candidates (see Figure 6.5). 
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Figure 6.8: Profile from marker regression of yield for the Steptoe-Morex double haploid barley 

population. 

 

Marker regression, although a simple technique useful for QTL identification, has two 

key limitations: 1) the residual term, i, contains genetic variation due to QTLs 

segregating elsewhere in the genome and 2) the size of the QTL effect is confounded with 

its distance from the tested marker. Simple interval mapping (SIM) was proposed by 

Lander and Botstein (1989) to overcome confounding of the QTL effect with location. 

 

6.1.2.2 Simple interval mapping 

In marker regression QTLs are only assessed at marker locations. If the true position of a 

QTL is in-between markers, QTL effects will be underestimated and the most plausible 

location biased towards the marker positions. An alternative is to calculate genetic 

predictors in-between markers. These are known as “pseudo-markers”. By using pseudo-

markers, in addition to the real markers, better coverage of the genome is achieved, 

resulting in improved estimates of QTL locations and effects. This is especially true when 

the number of markers is not large. 

In simple interval mapping (SIM) (Lander and Botstein, 1989), QTL effects are 

estimated as the regression coefficients on genetic predictors (α) calculated at intervals 

along the genetic map, as well as at marker positions (i.e. in Equation 1, xi is extended to 

include locations between markers).  

To perform SIM in Genstat, open the Stats | QTLs (Linkage/Association) | QTL Analysis | 

Single Trait Linkage Analysis (Single Environment) menu and click on the Step size button 
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(Figure 6.5). We’ll set the step size to 10cM (Figure 6.9). This generates genetic 

predictors in-between markers, making sure that the gap between two consecutive genetic 

predictors is not larger than 10cM, in addition to at marker positions. Setting the step size 

to a small value will produce more detailed plots in the case of sparse maps, but will have 

little effect for dense maps. The smaller the step, the larger the number of evaluation 

points, and therefore the computation time required in the QTL mapping stage will be 

longer. If you do not change the step size from the default, 106, then marker regression 

will be performed. Click Initial Scan (SIM) to perform the analysis.  

 

 

Figure 6.9: Changing the step size to calculate genetic predictors between marker positions for 

use in SIM. 

 

Alternatively, genetic predictors calculated from the Calculate Genetic Predictors menu, 

where Options was used to specify the step size (see Section 6.1.1), can be inputted using 

Specify predictor (Figure 6.6).  

The (re)calculated additive genetic predictors can be accessed from the QTL Data View 

(see Figure 6.2). The notation ClPk labels the genetic predictor calculated on linkage 

group (chromosome) l at position k. Using a maximum step size of 10cM, 174 genetic 

predictors are calculated; 116 from markers and 58 from pseudo-markers. 

The output from a SIM analysis of yield is given below: 

 

Summary 

======= 

 

Trait: yield 

------------ 

 

The following loci have a test statistic larger than THRESHOLD=3.114 

 

The test statistic is based on 1 set of predictors 

 

       Locus     IdLocus Chromosome   Position  -Log10(P) 

          26        C2P8          2        8.1       4.28 
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          27       chs1b          2       16.1       6.52 

          28       C2P22          2       21.6       6.89 

          29        rbcs          2       27.2       5.59 

          30       C2P34          2       34.2       6.81 

          31        abg2          2       41.2       6.52 

          32      abg459          2       47.3       4.43 

          57       C3P57          3       56.9       3.12 

          61     abg703a          3       83.6       3.14 

         155        rrn2          7       48.2       3.61 

         156        ltp1          7       52.8       3.35 

         157       C7P61          7       60.5       6.14 

         158         ale          7       68.2       8.22 

         159      abc302          7       78.2       6.93 

         160       C7P85          7       85.2       6.41 

         161      cdo57b          7       92.2       4.29 

 

 

Selection of QTL candidates 

=========================== 

 

The following candidates have been selected 

 

     Locus   IdLocus  Chromosome    Position 

        28     C2P22           2        21.6 

        61   abg703a           3        83.6 

       158       ale           7        68.2 

 

 

 

 

Figure 6.10: Profile plot from SIM of yield, with a step size of 10cM. 

 



6  Linkage analysis: inbred population with a single trait evaluated at a single site 

138 

 

Of the 174 genetic predictors, 16 have an associated probability value (on the -log10 

scale) larger than threshold, and 3 of these have been identified as candidate QTLs 

(C2P22, abg703a and ale). Both SIM and marker regression have identified candidate 

QTLs on chromosome 3 and 7 at marker loci. However, the estimated location of the 

candidate QTL on chromosome 2 has changed from marker chs1b with position 16.1 to 

pseudo-marker C2P22 with position 21.6. The profile plot is given in Figure 6.10. 

 

6.1.2.3 Composite interval mapping 

In plant breeding we expect phenotypic trait variation to be the result of a large number 

of QTLs, each one with a minor effect. Although SIM removes the confounding of QTL 

effect with location, the residual term, i, still contains genetic variation due to QTLs 

segregating elsewhere in the genome. Composite interval mapping (CIM) enhances the 

precision and power of QTL detection by introducing a number of genetic predictors, 

referred to as cofactors, to control for background genetic variation (i.e. the variation 

caused by QTLs outside the region where the QTL is being tested). CIM was 

simultaneously proposed by Zeng (1994) and Jansen and Stam (1994). 

CIM is a multi-QTL model: 

𝑦𝑖 = 𝜇 + ∑ 𝛼𝑐
∗𝑥𝑖𝑐𝑐∈𝐶 +  𝛼𝑥𝑖 + 𝜀𝑖  + 𝑒𝑖 Equation 2 

where 

C is the set genetic predictors used as cofactors, c = 1, …, C 

yi  is the trait mean for genotype i  

µ is the overall mean 

𝛼𝑐
∗ is the QTL effect for cofactor c 

xic  is the genetic predictor of cofactor c for genotype i. 

α is the QTL effect at the position on the genome being tested  

xi  is the genetic predictor for genotype i at the position being tested  

i is the genetic residual for genotype i (or residual if unit errors are omitted) 

ei is the unit error for genotype i. 

As for marker regression and SIM, the model is fitted using REML with Genotype 

random (representing i) and the QTL effects fitted as fixed. If estimates of unit error are 

not available, the term ei is omitted from the model and the term i represents the residual.  

In Genstat we perform CIM, after an initial scan for QTLs by SIM (or marker 

regression), using candidate QTLs detected by SIM (or marker regression) as cofactors. 

CIM can then be repeated, using candidate QTLs detected by the previous CIM scan as 
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cofactors, until the list of candidate QTLs does not change. In general one or two rounds 

of CIM are usually sufficient.  

To perform a CIM analysis in Genstat open the Stats | QTLs (Linkage/Association) | QTL 

Analysis | Single Trait Linkage Analysis (Single Environment) menu. The Scan with cofactor 

(CIM) button will be activated after an initial scan QTLs by SIM (or marker regression) 

(see Figure 6.5). 

After performing a SIM scan on the Steptoe-Morex yield data, using a step size of 

10cM (Section 6.1.2.2), click on Scan with cofactors (CIM) to open the Candidate QTL 

(cofactors) window (Figure 6.11).  

 

 

Figure 6.11: Candidate QTL (cofactors) window used to select cofactors to perform composite 

interval mapping (CIM). 

 

The Candidate QTL (cofactors) window contains the complete list of genetic predictors 

(in this case 174) with their locus number, chromosome number, position, marker name 
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and -log10(p-value) from the last QTL scan (here, from SIM). This window is used to 

select cofactors. Automatically the candidate QTLs from the last QTL scan are selected 

(in our case C2P22, abg703a and ale) but you can modify this by removing or adding 

cofactors using the check box. To view the selected cofactors click on Sort by selected 

candidate QTLs. To re-order by loci click Sort by Loci. Leave the cofactors selected by 

default and run the analysis by clicking the Run button. 

The output contains the profile plot (Figure 6.12), the list of genetic predictors than 

have a -log10(p-value) higher than threshold, and a list of candidate QTLs. 

 
Summary 

======= 

 

Trait: yield 

------------ 

 

The following loci have a test statistic larger than THRESHOLD=3.114 

 

The test statistic is based on 1 set of predictors 

 

       Locus     IdLocus Chromosome   Position  -Log10(P) 

          26        C2P8          2        8.1       4.42 

          27       chs1b          2       16.1       6.83 

          28       C2P22          2       21.6       7.96 

          29        rbcs          2       27.2       7.09 

          30       C2P34          2       34.2       9.06 

          31        abg2          2       41.2       8.95 

         154      abg395          7       45.6       3.36 

         155        rrn2          7       48.2       4.22 

         156        ltp1          7       52.8       3.64 

         157       C7P61          7       60.5       6.76 

         158         ale          7       68.2       9.13 

         159      abc302          7       78.2       8.24 

         160       C7P85          7       85.2       6.73 

         161      cdo57b          7       92.2       3.87 

 

 

Selection of QTL candidates 

=========================== 

 

The following candidates have been selected 

 

     Locus   IdLocus  Chromosome    Position 

        30     C2P34           2        34.2 

       158       ale           7        68.2 
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Figure 6.12: Profile plot from one round of CIM on yield, using the candidate QTLs from SIM as 

cofactors. 
 

After one round of CIM, candidate QTLs are detected on chromosomes 2 and 7. 

However, the position of the candidate QTL on chromosome 2 has changed from 26.1 to 

34.2cM. Also note, the small effect detected by SIM on chromosome 3 is no longer 

significant. We repeat CIM until we don’t see any more changes in the list of candidate 

QTLs. On the second round, marker abg703a is reinstated as a candidate. On round three, 

no further changes are made. After CIM, the list of candidate QTLs to be considered in 

the final QTL model are: 

 
Selection of QTL candidates 

=========================== 

 

The following candidates have been selected 

 

     Locus   IdLocus  Chromosome    Position 

        30     C2P34           2        34.2 

        61   abg703a           3        83.6 

       158       ale           7        68.2 

 

When performing a CIM analysis it is important to avoid co-linearity between a 

potential QTL and a cofactor. This is done by temporarily removing cofactors from the 

model when testing a QTL in a nearby region. By default, Genstat specifies a 50cM region 

around the potential QTL. This can be changed in the Linkage Analysis Options window 

using the Minimum cofactor proximity: setting (see Figure 6.7). The sensitivity of the CIM 
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results to this setting should be tested. When Minimum cofactor proximity: is set to a large 

value, i.e. 106, all cofactors on the same chromosome as the potential QTL are excluded, 

a strategy known as restricted CIM.  

 

6.1.2.4 Final QTL model 

After scanning the genome to detect candidate QTLs (by marker regression, SIM, or 

preferably CIM), the final step in QTL mapping consists of fitting a final multi-QTL 

model. Here phenotypic variation is modelled as the result of the contributions from 

several QTLs using multiple linear regression. By default the final model is selected using 

backward selection; here all candidate QTLs are fitted in the same model and then tested 

one-by-one to determine if their contribution to the model is significant. 

We can write the final multi-QTL model as:  

𝑦𝑖 = 𝜇 + ∑ 𝛼𝑞𝑥𝑖𝑞𝑞∈𝑄 + 𝜀𝑖  + 𝑒𝑖 Equation 3 

where 

Q is the set of QTLs, q = 1, …, Q 

yi  is the trait mean for genotype i  

µ is the overall mean 

αq is the effect of QTL q 

xiq  is the genetic predictor of QTL q for genotype i 

i is the genetic residual for genotype i (or residual if unit errors are omitted), assumed 

to follow a Normal distribution with mean 0 and variance σ2 

ei is the unit error for genotype i. 

 

The model is fitted using REML, with Genotype random (representing i) and the 

QTL effects (αq, q = 1, …, Q) fitted as fixed. If estimates of unit error are not available, 

the ei term is omitted from the model and the term i represents the residual. 

To perform the analysis click on Select final QTL model in the Single Trait Linkage Analysis 

(Single Environment) window (Figure 6.5). This will open the Select Final QTL Model 

window where you can select what output to display, specify whether to use backward 

selection to determine the final QTL model, and save results from the final QTL model 

(Figure 6.13). 

To view (or modify) the candidate QTLs tested in the final model, click on Candidate 

QTLs. We use the three candidate QTLs detected by CIM (C2P34, abg703a, ale). Click 

Run to perform the analysis. 
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Figure 6.13: Window for fitting a final QTL model to estimate QTL effects in single environment 

trials. 

 

The output for the final multi-QTL model is: 

 
 

Estimation of QTL effects from a single-environment trial 

========================================================= 

 

 

 

REML variance components analysis 

================================= 

 

Response variate:  yield 

Fixed model:       Constant + QTL[30] + QTL[61] + QTL[158] 

Random model:      genotype 

Number of units:   150 

 

genotype used as residual term 
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Sparse algorithm with AI optimisation 

 

 

Residual variance model 

----------------------- 

 

Term                         Model(order)  Parameter        Estimate      s.e. 

genotype                     Identity      Sigma2              0.297    0.0348 

 

 

Tests for fixed effects 

----------------------- 

 

Sequentially adding terms to fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

QTL[30]                            37.94       1         37.94   146.0  <0.001 

QTL[61]                            17.67       1         17.67   146.0  <0.001 

QTL[158]                           40.30       1         40.30   146.0  <0.001 

 

Dropping individual terms from full fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

QTL[30]                            37.61       1         37.61   146.0  <0.001 

QTL[61]                            13.61       1         13.61   146.0  <0.001 

QTL[158]                           40.30       1         40.30   146.0  <0.001 

 

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated 

using algebraic derivatives ignoring fixed/boundary/singular variance 

parameters. 

 

 

Summary 

======= 

 

 

Trait: yield 

Population type: DH1 

Number of genotypes: 150 

Number of linkage groups: 7 

Number of markers: 116 

 

List of QTLs 

============ 

 

 Locus  Locus            Linkage Position -log10(P) 

   no.  name               group 

    30  C2P34                  2    34.20     8.114 

    61  abg703a                3    83.60     3.499 

   158  ale                    7    68.20     8.586 
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QTL effects 

=========== 

 

 Locus  Locus               %Expl.       Add. High value  s.e. 

   no.  name                  Var.       eff.     allele 

    30  C2P34               17.662      0.292    Steptoe 0.048 

    61  abg703a              5.894      0.169      Morex 0.046 

   158  ale                 17.019      0.287    Steptoe 0.045 

 

 

Estimated lower and upper bounds of QTL positions 

================================================= 

 

 Locus  Locus              Lower Position    Upper 

   no.  name               bound             bound 

    30  C2P34              0.000   34.200  183.100 

    61  abg703a           16.300   83.600  205.000 

   158  ale                4.700   68.200  191.200 

 

The final QTL model fits three QTLs, all of which are highly significant (p<0.001; 

from dropping the individual QTL terms from the full fixed model). The estimated QTL 

effects are given in the table QTL effects, with the column High value allele 

indicating which parent is providing the high yielding allele for each QTL. For example, 

the estimated effect for the QTL C2P34, is 0.292 ton/ha (Steptoe) with standard error 

0.048 ton/ha. Therefore replacing the Morex parental allele by the Steptoe parental allele 

at QTL C2P34 is expected to result in an increase yield of 0.292 ton/ha (the expected 

difference in yield between the two homozygous types is twice as large). The final table 

in the output gives the estimated locations of the QTLs with 95% confidence intervals.  

In Figure 6.14 the significant QTLs are plotted on a genetic map.  
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Figure 6.14: Genetic map of the Steptoe-Morex data with detected QTLs shown. 

 

 Accounting for uncertainty in trait means 

Linkage analysis in Genstat is performed on trait means. However, if the genotypes are 

unequally replicated, incorporating the unit error, a measure of precision of the trait means 

(see Section 3.2), in QTL analysis can improve detection. Unit errors are included in a 

QTL analysis via the Include unit errors: field in the Linkage Analysis Options window 

(Figure 6.7). If a unit error data structure has been stored in the QTL Data Space then the 

name of that structure will be automatically entered into the input field. 

 

 Multiple comparisons 

Genstat’s QTL models are implemented in the mixed model framework with each genetic 

predictor (potential QTL) tested as a fixed effect. The systematic genome-wide testing of 

each genetic predictor in marker regression, SIM, and CIM introduces the problem of 

multiple testing. That is, the genome-wide Type I error rate is inflated and the probability 

of declaring a non-significant QTL as significant is increased. The methods implemented 

in Genstat to moderate the false discovery rate are a Bonferroni correction and a method 

proposed by Li and Ji (2005). The Bonferroni correction adjusts the genome-wide error 
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rate for the number of tests performed. However, it assumes (incorrectly) that independent 

tests occur at a fixed distance on the genome (default 4cM). This results in too 

conservative a threshold for QTL detection. Genstat’s default is to use the method 

proposed by Li and Ji (2005); a Bonferroni correction based on the effective number of 

independent tests.  

Both methods result in a genome-wide significance threshold, expressed as a p-value 

on the -log10 scale. This determines the critical value to reject the null hypothesis of no 

QTL effect. The genome-wide Type I error rate, which defaults to 0.05, can be specified 

in the Genstat Linkage Analysis Options window (Figure 6.7). The Linkage Analysis Options 

window also allows you to specify your own threshold value, expressed as a p-value on 

the -log10 scale. 

 

6.2 Dominance and additive effect of the second parent  

 

The models for detecting QTLs described in Section 6.1 include only additive genetic 

predictors. However, in the case of F2 or cross-pollinating (CP) populations, dominance 

genetic predictors can also be modelled. The equations for the statistical models presented 

in Section 6.1 can be easily modified to accommodate dominance effects. For example, 

to incorporate dominance effects into the marker regression (or SIM) model, we modify 

Equation 1 to:  

𝑦𝑖 = 𝜇 + 𝛼𝑎𝑥𝑖
𝑎 + 𝛼𝑑𝑥𝑖

𝑑 + 𝜀𝑖  + 𝑒𝑖  Equation 4 

where 

αa is the additive QTL effect at the position being tested  

xi
a is the additive genetic predictor for genotype i at the position being tested  

αd is the dominance QTL effect at the position being tested 

xi
d is the dominance genetic predictor for genotype i at the position being tested.  

Including dominance effects into QTL detection models is straightforward - simply 

check the Include dominance effects: on Single Trait Linkage Analysis (Single Environment) 

window (Figure 6.5).  

Additive genetic predictors of the second parent are also readily incorporated when 

conducting a QTL analysis on a cross-pollinating (CP) population (see Chapter 8).  

When dominance and/or additive effects of the second parent are modelled, the term 

“QTL effect” often refers to the combined effect of all genetic predictors modelled at that 

locus: i.e. the additive, dominance, and additive effects of the second parent. 
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7 Linkage analysis: inbred population with multiple 

traits evaluated or multiple trials 
 

In Chapter 6 linkage analysis, a method for detecting quantitative trait loci (QTLs), was 

illustrated for an inbred population with a single trait evaluated at a single site. However, 

linkage analysis can also be performed across multiple environments, with estimation of 

QTL × environment (QTL×E) interactions, and for multiple traits in a single environment, 

allowing QTLs to be simultaneously tested for on multiple traits. Chapter 7 extends the 

analysis for inbred populations to these cases. For both data types, we describe the 

underlying statistical models and demonstrate QTL linkage analysis using Genstat. 

 

In this chapter you will learn how to:  

 detect QTLs in a single trait, multiple environment data set (Section 7.2) 

 detect QTLs in a multiple trait, single environment data set (Section 7.3) 

  



7  Linkage analysis: inbred population with multiple traits evaluated or multiple trials 

150 

 

7.1 QTL linkage analysis in Genstat 

 

Chapter 6 illustrated QTL analysis in Genstat for the simplest type of data set: single trait 

- single environment. In this chapter we extend QTL analysis to data sets where a single 

trait has been evaluated in multiple environments (Section 7.2); or where multiple traits 

have been assessed in a single environment (Section 7.3). For both types of data we i) 

describe the statistical theory underpinning Genstat’s QTL linkage models, and ii) 

demonstrate QTL analysis in Genstat. 

The analysis strategy used to detect and estimate QTL effects in these more complex 

data sets is very similar to that presented in Chapter 6. Namely: 

1) predicted trait means are obtained from preliminary analyses of each trial (see 

Chapter 3) 

2) genetic predictors are calculated for use as explanatory variables in the QTL 

models (see Section 6.1.1) 

3) an initial genome-wide scan by marker regression or SIM (see Sections 6.1.2.1 

and 6.1.2.2, respectively) is performed to obtain candidate QTL positions for use 

as cofactors in subsequent CIM scans 

4) one or more rounds of CIM is performed, in which co-factors correct for QTLs 

that segregate elsewhere in the genome (see Section 6.1.2.3) 

5) the final multi-QTL model is selected and fitted (see Section 6.1.2.4) 

The key differences are, for multiple environment (single trait) data sets the scans test 

for environment-specific QTL effects, allowing for QTL by environment interactions 

(QTL×E). For multiple trait (single environment) data sets, the scans test for QTL effects 

on each trait simultaneously. 

 

7.2 Single trait multiple environments 

 

The statistical models for QTL detection for a single trait - single environment data set 

are described in Section 6.1.2. Here, we extend these models to multiple environment 

(single trait) data sets. For simplicity, we consider only additive genetic effects, although 

the models are easily modified to incorporate both dominance and additive effects of the 

second parent (refer to Section 6.2). 

For multiple environments, the model for SIM (or marker regression) can be expressed 

as (refer to Section 6.1.2.2): 
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𝑦𝑖𝑗 = 𝜇 + 𝐸𝑗 + 𝛼𝑗𝑥𝑖 + 𝜀𝑖𝑗 + 𝑒𝑖𝑗  Equation 1 

where 

yij  is the trait mean for genotype i in environment j (j = 1, …, m) 

µ is the overall mean 

Ej is the environment j main effect 

αj is the QTL effect for environment j at the position on the genome being tested 

xi  is the genetic predictor for genotype i at the position being tested  

ij  is the residual for genotype i in environment j  

eij is the unit error for genotype i in environment j. 

 

The model is fitted using REML, with the QTL (αj, j = 1, …, m) and environment (Ej, 

j = 1, …, m) effects fitted as fixed and Genotype fitted as a random (allowing 

specification of the variance-covariance matrix).  

The residuals, ij, representing the unexplained genotype and environment effects, are 

assumed be Normally distributed with mean 0 and variance-covariance structure 

VCOV(ij). The matrix VCOV can either be modelled explicitly (i.e. with an unstructured 

model) or using the best variance-covariance model selected during a G×E analysis, as 

described in Chapter 4. The unit errors, eij, represent the uncertainty on the trait means 

(see Section 3.2). However, if estimates of the unit errors are not available, eij and ij 

cannot be separately estimated (see Section 4.3). 

The CIM model is formed by including cofactors into Equation 1 (refer to Section 

6.1.2.3):  

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑗 + ∑ 𝛼𝑗𝑐
∗ 𝑥𝑖𝑐𝑐∈𝐶 + 𝛼𝑗𝑥𝑖 + 𝜀𝑖𝑗  +  𝑒𝑖𝑗   Equation 2 

where 

C is the set genetic predictors used as cofactors, c = 1, …, C 

𝛼𝑗𝑐
∗  is the QTL effect for cofactor c in environment j 

xic  is the genetic predictor of cofactor c for genotype i. 

 

We can write the final multi-QTL model as (refer to Section 6.1.2.4):  

𝑦𝑖𝑗 = 𝜇 + 𝐸𝑗 + ∑ 𝛼𝑗𝑞𝑥𝑖𝑞𝑞∈𝑄 + 𝜀𝑖𝑗  + 𝑒𝑖𝑗  Equation 3 

where 

Q is the set of QTLs, q = 1, …, Q 

αjq is the effect of QTL q in environment j. 

xiq  is the genetic predictor of QTL q for genotype i. 
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We illustrate QTL analysis for single trait - multiple environment data sets using mean 

maize yields (yld) from the 8 environment CIMMYT maize trials held in file 

F2maize_pheno.csv (described in Section 1.3.2). Marker and map information for 

this F2 population are held in Flapjack files F2maize_geno.txt and 

F2maize_map.txt, respectively. Import and check the phenotypic and genotypic data 

(see Chapter 2). This F2 population compromises 211 individuals (genotypes) genotyped 

with 122 markers. The 122 markers have been mapped to 10 linkage groups ranging in 

length from 109cM to 266cM.  

To resolve the discrepancy in the ordering of genotypes between the phenotypic and 

marker data sets run a compatibility check: Stats | QTLs (Linkage/Association) | Data 

Manipulation | Compatibility Check (see Section 2.3.1). Here, the new data structures have 

been suffixed by _new (Figure 7.1). 

 

 

Figure 7.1: Performing a compatibility check on the phenotypic and genotypic CIMMYT maize 

data to resolved the discrepancy in the ordering of genotypes. 
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The Single Trait Linkage Analysis (Multiple Environments) window (Figure 7.2) can be 

accessed by either: 

 Stats | QTLs (Linkage/Association) | QTL Analysis | Single Trait Linkage Analysis (Multiple 

Environments); or, 

 in the QTL Data View via the shortcut QTL analysis | Single Trait Linkage Analysis 

(Multiple Environments).  

Genstat will automatically populate the input fields using data from the QTL Data 

Space. The menu is similar to that of a single trait - single environment analysis (see 

Figure 6.5) except for the addition of the Environment factor: and Variance-covariance model: 

fields. In this illustration, we include only additive effects in the QTL models, however 

as this is an F2 population you could opt to include dominance effects (see Section 6.2). 

If unit errors are available, they should be included in the analysis by checking the Include 

unit errors: box accessed via the Options button (refer to Figure 6.7). Refer to Chapter 6 for 

further details on the input fields and Options. 

 

 

Figure 7.2: Menu for performing a single trait - multiple environment QTL analysis on yield 

(yld_new) from the CIMMYT maize trial data. For this population, FA (Factor analytic, order 

1) is chosen as the best variance-covariance model (see Section 4.2). 
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The Variance-covariance model: field allows you to select the variance-covariance 

structure for modelling the variation between genotypes both across and within 

environments (see Section 4.1.3). If you’ve previously performed a genotype by 

environment analysis (described in Chapter 4), then the best model is selected by default. 

If not, the Select best button opens the Select Best Variance-covariance Model window (see 

Figure 4.3), enabling the selection of the best variance-covariance model based on either 

Schwarz Information Criterion (SIC) or Akaike Information Criterion (AIC). In this 

example, SIC identifies FA (Factor analytic, order 1) as the “best model” for yld_new 

(SIC = 17524). For full details on selecting the best variance-covariance model refer to 

Section 4.2. 

To perform an initial scan by SIM with a maximum gap of 10cM between two 

consecutive genetic predictors (for example), use the Step size button to set the interval to 

10 (see Figure 6.9). If you do not change the step size from the default, 106, then marker 

regression will be performed (see Section 6.1.2.1). We accept the default Options (see 

Figure 6.7), including the Li and Ji (2005) method to adjust the genome-wide significance 

level (default = 0.05) for multiple comparisons. Click Initial Scan (SIM) to run the analysis. 

Results from SIM, given below, list 26 positions where the associated -log10(p-value) 

is above threshold; here 3.21, calculated according to the Li and Ji method. The notation 

ClPk is used to denote position k on linkage group (chromosome) l. SIM has identified 

seven candidate QTLs (L085, L028, C2P36, C3P46, L071, L043 and C10P60). Their 

selection is according to the criterion specified in the options (in this example, a minimum 

distance of 30cM apart). 

 

Summary 

======= 

 

Trait: yld_new 

The following loci have a test statistic larger than THRESHOLD=3.21 

 

    Locus IdLocus Chromosome   Position -Log10(P) 

       14  C1P102          1      101.9      4.75 

       15  C1P110          1      110.4      6.84 

       16  C1P119          1      119.0      8.53 

       17    L065          1      127.5      9.24 

       18  C1P134          1      134.2     12.44 

       19    L085          1      141.0     13.41 

       20    L039          1      150.2      8.45 

       21  C1P158          1      158.4      7.71 

       22  C1P167          1      166.6      5.31 

       35    L028          1      252.0      3.39 
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       42   C2P36          2       35.9      3.48 

       70   C3P38          3       37.9      3.60 

       71   C3P46          3       45.5      3.88 

       72    L020          3       53.2      3.57 

       73    L035          3       55.7      3.74 

       74   C3P61          3       61.5      3.47 

      112    L071          4      136.6      3.42 

      113    L080          4      145.0      3.31 

      158  C6P117          6      117.2      3.35 

      159    L043          6      125.0      4.08 

      160  C6P133          6      133.4      3.33 

      236    L114         10       53.2      6.41 

      237  C10P60         10       60.1      8.44 

      238    L089         10       67.1      7.80 

      239  C10P76         10       76.2      7.09 

      240  C10P85         10       85.2      4.47 

 

 

Selection of QTL candidates 

=========================== 

 

The following candidates have been selected 

 

     Locus   IdLocus  Chromosome    Position 

        19      L085           1       141.0 

        35      L028           1       252.0 

        42     C2P36           2        35.9 

        71     C3P46           3        45.5 

       112      L071           4       136.6 

       159      L043           6       125.0 

       237    C10P60          10        60.1 

 

The SIM profile plot, Figure 7.3, consists of two frames. The upper frame profiles the 

p-values (on the -log10 scale) against linkage group position. A red horizontal line 

indicates the significance threshold. In the lower panel, the additive QTL effects are 

shown. The 8 environments are listed on the Y-axis, with coloured points aligning to 

positions with a test statistic exceeding threshold. The point is coloured according to 

which parent provided the allele for high yld_new (i.e. the superior allele); blue denotes 

that the high value allele originates from parent 1 and red from parent 2. The intensity of 

the colour represents the magnitude of the effect.  

In this example, the candidate QTL identified in the middle of chromosome 1 (L085) 

has a significant additive effect in all environments except LN96a and LN96b. The high 

value allele is provided by parent 2 (red), except in environment HN96b where the 

superior allele is that of parent 1 (blue). This reversal of performance is an example of 
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QTL×E cross-over interaction (see Section 4.1.1). From the intensities of the colours we 

deduce that the QTL effect is strongest in SS92a (dark red) and weakest in SS94a.  

 

Figure 7.3: Profile plot from SIM of yld_new, with a step size of 10cM. 

 

Note: failure to perform a compatibility check (Section 2.3.1) prior to QTL analysis 

results in the error message: 

******** Fault 1, code UF 1, statement 99 in procedure QMQTLSCAN 

 

Phenotypic and marker data are in a different order because labels of GENOTYPES 

and IDMGENOTYPES are not identical. 

 

After performing an initial genome-wide scan by SIM, the Scan with cofactors (CIM) and 

Select final QTL model buttons will activate. Before selecting the final multi-QTL model, 

a CIM scan is recommended. CIM performs a QTL search controlling for background 

genetic variation using cofactors (see Section 6.1.2.3), increasing the power to detect 

QTLs.  
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To scan for QTLs using CIM click on the Scan with cofactors (CIM) button. This opens 

the Candidate QTLs (cofactors) window (Figure 6.11). The candidate QTLs from the last 

QTL scan are automatically selected as cofactors, but any set of cofactors can be selected. 

Leave the cofactors selected by default and click Run (this could take some time). It is 

usual to repeat CIM until the list of candidate QTLs is unchanged (in this case, 1 round 

is sufficient). 

The output produced is essentially the same as for SIM; a summary of results (now 

including the list of cofactors used) and a profile plot (Figure 7.4). 

 
Summary 

======= 

 

Trait: yld_new 

Specified cofactors are: 

    Cofactor     IdLocus  Chromosome    Position 

          19        L085           1      141.00 

          35        L028           1      252.00 

          42       C2P36           2       35.90 

          71       C3P46           3       45.53 

         112        L071           4      136.60 

         159        L043           6      125.00 

         237      C10P60          10       60.15 

 

The following loci have a test statistic larger than THRESHOLD=3.21 

 

    Locus IdLocus Chromosome   Position -Log10(P) 

       16  C1P119          1      119.0      8.07 

       17    L065          1      127.5      8.83 

       18  C1P134          1      134.2     11.97 

       19    L085          1      141.0     12.85 

       20    L039          1      150.2      8.07 

       21  C1P158          1      158.4      7.91 

       41   C2P26          2       26.1      3.66 

       42   C2P36          2       35.9      4.37 

       43   C2P46          2       45.6      4.17 

       44    L120          2       55.4      3.35 

       69   C3P30          3       30.2      3.71 

       70   C3P38          3       37.9      4.42 

       71   C3P46          3       45.5      4.41 

       72    L020          3       53.2      3.81 

       73    L035          3       55.7      4.64 

       74   C3P61          3       61.5      4.39 

       75    L100          3       67.2      3.28 

      112    L071          4      136.6      3.43 

      159    L043          6      125.0      3.73 

      236    L114         10       53.2      5.42 

      237  C10P60         10       60.1      7.82 
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      238    L089         10       67.1      7.74 

      239  C10P76         10       76.2      7.34 

 

 

Selection of QTL candidates 

=========================== 

 

The following candidates have been selected 

 

     Locus   IdLocus  Chromosome    Position 

        19      L085           1       141.0 

        42     C2P36           2        35.9 

        73      L035           3        55.7 

       112      L071           4       136.6 

       159      L043           6       125.0 

       237    C10P60          10        60.1 

 

 

Figure 7.4: Profile plot from CIM of yld_new, after 1 round of SIM and 1 round of CIM.  
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Six candidate QTLs have been identified by CIM; one fewer than SIM with now only 

one candidate on chromosome 1. Furthermore, the position of the candidate QTL on 

chromosome 3 has altered slightly: from 45.5 to 55.7cM. The profile plot (Figure 7.4) 

indicates QTL×E cross-over interactions on chromosomes 1, 2, and 6. 

Now that a set of candidate QTLs has been defined, the final multi-QTL model can be 

selected and fitted (see Section 6.1.2.4). Click on the Select final QTL model button to open 

the Select Final QTL Model window (Figure 7.5). From this window you can select what 

output to display, specify whether to use backward selection to determine the final model, 

set the variance-covariance model, and save results from the final QTL model. By default 

the variance-covariance model will be set to the model used for the QTL scan, and 

backward selection with significance level 0.05 will be used to select the final QTL 

model. Unselecting Run QTL backward selection will force all candidate QTLs to be 

retained in the final model and to have environment-specific effects. Click Run to select 

the final QTL model using backward selection. 

 

 

Figure 7.5: Window for fitting a final multi-QTL model to a single trait - multiple environment 

data set. 
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The backward selection process compromises of two key steps: 

1) Determining which QTLs are significant in the multi-QTL model. Starting 

with a model that contains all candidate QTLs, the procedure iteratively tests the 

importance of each candidate QTL, i.e. tests their effect conditional on the other 

QTLs in the model, leaving out those that are not significant. Here, “QTL effect” 

is the additive effect, combined, if modelled, with the additive effect of the second 

parent and/or the dominance effect. This process is repeated until all QTLs 

included in the model are significant. 
 

2) Testing for QTL×E interactions. The procedure then tests whether the remaining 

QTLs exhibit significant interactions with environment, by partitioning the QTL 

effects into QTL main effects and QTL×E interactions. If the QTL×E interaction 

is not significant, then only the QTL main effect is retained in the model.  

When dominance is fitted, the backward selection process has a third step: 

3) Testing for dominance effects. If the selected QTL displays no significant 

interaction with environment, then a test is performed of whether the dominance 

effect has a significant contribution in the combined QTL effect. If the selected 

QTL has a significant QTL×E interaction, a test is performed of whether the 

dominance-by-environment interaction has a significant contribution in the 

combined QTL×E interaction. 

In this example, as only additive effects being modelled, Step 3 is not relevant. 

The first section of the output reports the QTLs retained in the model and whether they 

show a significant interaction with environment. 

 
QTL backward selection for loci in multiple environment trials 

============================================================== 

 

 

Summary 

======= 

 

Trait: yld_new 

-------------- 

 

       Term  env_new.pred[112] is removed from the model 

 

 

Significant terms 

----------------- 
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  Locus      IdLocus Chromosome   Position Interaction 

     19         L085          1     141.00           1 

     42        C2P36          2      35.90           1 

     73         L035          3      55.70           1 

    112         L071          4     136.60           0 

    159         L043          6     125.00           1 

    237       C10P60         10      60.15           1 

 

In this case, all six candidates are retained in the model and therefore listed under the 

heading Significant terms. The list presents the usual locus description (number, 

locus name, chromosome, position), plus an extra line that contains an indicator variable 

under the heading Interaction. This logical variable contains a 1 when the QTL×E is 

significant and a 0 when the QTL×E is not significant. For this example, 5 of the 6 QTLs 

have a significant QTL×E interaction. However, there is no evidence of an interaction 

with environment for the QTL on chromosome 4, L071, at loci 112. Consequently only 

the main effect of QTL L071 will be retained in the final model: the term associated with 

its interaction with environment, env_new.pred[112], is removed. The notation 

pred[L]refers to the QTL at locus L. 

Standard REML output is then given for the selected multi-QTL model, including 

variance component estimates and significance tests of the QTLs.  

 

REML variance components analysis 

================================= 

 

Response variate:  yld_new 

Fixed model:       Constant + env_new + pred[19] + pred[42] + pred[73] + 

pred[112] + pred[159] + pred[237] + env_new.pred[19] + env_new.pred[42] + 

env_new.pred[73] + env_new.pred[159] + env_new.pred[237] 

Random model:      genotype_new.env_new 

Number of units:   1688 

 

genotype_new.env_new used as residual term with covariance structure as below 

 

Sparse algorithm with AI optimisation 

 

 

Covariance structures defined for random model 

---------------------------------------------- 

 

Covariance structures defined within terms: 

 

Term                    Factor      Model                      Order  No. rows 

genotype_new.env_new    genotype_newIdentity                       0       211 

                        env_new     FA (covariance)               16         8 
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Residual variance model 

----------------------- 

 

Term           Factor        Model(order)  Parameter        Estimate      s.e. 

genotype_new.env_new                       Sigma2              1.000     fixed 

               genotype_new  Identity      -                       -         - 

               env_new       FA(1) (covariance form) 

                                           g_11                67.16      9.13 

                                           g_21                88.04      8.93 

                                           g_31                103.8       9.1 

                                           g_41                28.51      4.77 

                                           g_51                16.99      4.39 

                                           g_61                106.7      13.0 

                                           g_71                68.90      8.36 

                                           g_81                97.76      9.67 

                                           psi_1              11665.     1258. 

                                           psi_2               9445.     1136. 

                                           psi_3               8483.     1159. 

                                           psi_4               3409.      356. 

                                           psi_5               3042.      307. 

                                           psi_6              22717.     2519. 

                                           psi_7               9407.     1043. 

                                           psi_8              10956.     1336. 

 

 

 

Tests for fixed effects 

----------------------- 

 

Sequentially adding terms to fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

env_new                          7517.95       7       1061.16   415.7  <0.001 

pred[19]                            0.08       1          0.08   293.1   0.773 

pred[42]                            4.28       1          4.28   293.1   0.039 

pred[73]                           11.20       1         11.20   293.1  <0.001 

pred[112]                          14.14       1         14.14   293.1  <0.001 

pred[159]                           0.11       1          0.11   293.1   0.736 

pred[237]                           5.03       1          5.03   293.1   0.026 

env_new.pred[19]                   83.18       7         11.74   415.7  <0.001 

env_new.pred[42]                   26.77       7          3.78   415.7  <0.001 

env_new.pred[73]                   30.36       7          4.28   415.7  <0.001 

env_new.pred[159]                  31.44       7          4.44   415.7  <0.001 

env_new.pred[237]                  49.75       7          7.02   415.7  <0.001 

 

Dropping individual terms from full fixed model 

 

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

pred[112]                          13.09       1         13.09   293.1  <0.001 
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env_new.pred[19]                   82.22       7         11.61   415.7  <0.001 

env_new.pred[42]                   29.24       7          4.13   415.7  <0.001 

env_new.pred[73]                   25.42       7          3.59   415.7  <0.001 

env_new.pred[159]                  30.01       7          4.24   415.7  <0.001 

env_new.pred[237]                  49.75       7          7.02   415.7  <0.001 

 

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated 

using algebraic derivatives ignoring fixed/boundary/singular variance 

parameters. 

 

Finally, a summary is printed including the estimated QTL effects in the different 

environments, their standard errors, test of significance, and the estimated locations of 

the QTLs with 95% confidence intervals. The column High value allele indicates 

which parent provides the high yielding allele (superior allele) for each QTL in each 

environment. For example, the QTL on chromosome 1 (L085) has a larger effect in 

environment SS92a (72.0, parent 2) than environment IS92a (55.3, parent 2). In 

environment SS92a, replacing the parent 1 allele by the parent 2 allele at this QTL is 

expected to increase yield by 72.0 kg/plot (s.e. = 12.19 kg/plot), whereas in environment 

IS92a the expected increase is only 55.3 kg/plot (s.e. = 13.44 kg/plot). Note, that the 

effect in HN96b of 37.5 kg/plot (s.e. = 13.04 kg/plot) is associated with the allele from 

parent 1 as the high value one (an example of a cross-over interaction). 

The lower and upper 95% confidence intervals limits for the estimated locations of the 

QTLs are given by CI_LL and CI_UL, respectively. 

When backward selection is used to determine the final model, if the QTL×E 

interaction is non-significant, the QTL effect is constrained to be constant across all 

environments studied. In this example, QTL×E interactions are significant at all but L071. 

For QTL L071, replacing a parent 2 allele by a parent 1 allele is expected to increase 

yield by 16.3 kg/plot (s.e. = 4.53 kg/plot) in all 8 environments. 

 

Estimation of QTL effects from a multi-environment trial 

======================================================== 

 

 

 

REML variance components analysis 

================================= 

 

Response variate:  yld_new 

Fixed model:       Constant + env_new + env_new.pred[19] + env_new.pred[42] + 

env_new.pred[73] + pred[112] + env_new.pred[159] + env_new.pred[237] 

Random model:      genotype_new.env_new 

Number of units:   1688 
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genotype_new.env_new used as residual term with covariance structure as below 

 

Sparse algorithm with AI optimisation 

 

 

Covariance structures defined for random model 

---------------------------------------------- 

 

Covariance structures defined within terms: 

 

Term                    Factor      Model                      Order  No. rows 

genotype_new.env_new    genotype_newIdentity                       0       211 

                        env_new     FA (covariance)               16         8 

 

 

Residual variance model 

----------------------- 

 

Term           Factor        Model(order)  Parameter        Estimate      s.e. 

genotype_new.env_new                       Sigma2              1.000     fixed 

               genotype_new  Identity      -                       -         - 

               env_new       FA(1) (covariance form) 

                                           g_11                67.16      9.13 

                                           g_21                88.04      8.93 

                                           g_31                103.8       9.1 

                                           g_41                28.51      4.77 

                                           g_51                16.99      4.39 

                                           g_61                106.7      13.0 

                                           g_71                68.90      8.36 

                                           g_81                97.76      9.67 

                                           psi_1              11665.     1258. 

                                           psi_2               9445.     1136. 

                                           psi_3               8483.     1159. 

                                           psi_4               3409.      356. 

                                           psi_5               3042.      307. 

                                           psi_6              22717.     2519. 

                                           psi_7               9407.     1043. 

                                           psi_8              10956.     1336. 

 

 

 

Tests for fixed effects 

----------------------- 

 

Sequentially adding terms to fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

env_new                          7517.94       7       1061.16   415.7  <0.001 

env_new.pred[19]                   83.26       8         10.25   400.8  <0.001 

env_new.pred[42]                   31.05       8          3.82   400.8  <0.001 
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env_new.pred[73]                   41.56       8          5.12   400.8  <0.001 

pred[112]                          14.14       1         14.14   293.1  <0.001 

env_new.pred[159]                  31.56       8          3.89   400.8  <0.001 

env_new.pred[237]                  54.78       8          6.75   401.0  <0.001 

 

Dropping individual terms from full fixed model 

 

Fixed term                Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

env_new.pred[19]                   82.23       8         10.13   400.8  <0.001 

env_new.pred[42]                   35.51       8          4.37   400.8  <0.001 

env_new.pred[73]                   35.48       8          4.37   400.8  <0.001 

pred[112]                          13.09       1         13.09   293.1  <0.001 

env_new.pred[159]                  30.21       8          3.72   400.8  <0.001 

env_new.pred[237]                  54.78       8          6.75   401.0  <0.001 

 

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated 

using algebraic derivatives ignoring fixed/boundary/singular variance 

parameters. 

 

 

 

Summary 

======= 

 

 

Trait: yld_new 

Population type: F2 

Number of genotypes: 211 

Number of environments: 8 

Number of linkage groups: 10 

Number of markers: 122 

Variance-covariance model: FA 

 

List of QTLs 

============ 

 

 

Locus no.  Locus name           Linkage group  Position   -log10(P)     QTLxE 

       19  L085                             1    141.00      13.760       yes 

       42  C2P36                            2     35.90       4.665       yes 

       73  L035                             3     55.70       4.661       yes 

      112  L071                             4    136.60       3.527        no 

      159  L043                             6    125.00       3.712       yes 

      237  C10P60                          10     60.15       8.313       yes 

 

 

QTL (Locus name): L085 

====================== 

 

 

Location: linkage group 1 position 141 
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-------------------------------------- 

 

 

Environment     Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

HN96b           37.466    Parent1   13.035    0.004      3.1   124.55   157.45 

IS92a           55.323    Parent2   13.440    0.000      7.2   124.55   157.45 

IS94a           56.192    Parent2   14.226    0.000      7.2   124.55   157.45 

LN96a            0.117    Parent2    6.660    0.986      0.0        *        * 

LN96b            1.577    Parent2    5.915    0.790      0.0        *        * 

NS92a           63.762    Parent2   18.925    0.001      5.2   124.55   157.45 

SS92a           72.019    Parent2   12.193    0.000     15.1   124.55   157.45 

SS94a           27.543    Parent2   14.678    0.061      1.7        *        * 

 

 

QTL (Locus name): C2P36 

======================= 

 

 

Location: linkage group 2 position 35.9 

--------------------------------------- 

 

 

Environment     Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

HN96b           19.080    Parent2   15.757    0.226      0.8        *        * 

IS92a           48.550    Parent1   16.247    0.003      5.5     0.00   198.50 

IS94a            3.674    Parent1   17.196    0.831      0.0        *        * 

LN96a            2.377    Parent2    8.051    0.768      0.1        *        * 

LN96b           22.827    Parent2    7.151    0.001      6.7     0.00   198.50 

NS92a           55.737    Parent1   22.877    0.015      4.0     0.00   198.50 

SS92a           18.973    Parent1   14.739    0.198      1.0        *        * 

SS94a           13.281    Parent1   17.744    0.454      0.4        *        * 

 

 

QTL (Locus name): L035 

====================== 

 

 

Location: linkage group 3 position 55.7 

--------------------------------------- 

 

 

Environment     Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

HN96b           57.120    Parent2   13.378    0.000      7.2     0.00   225.00 

IS92a           15.282    Parent2   13.794    0.268      0.5        *        * 

IS94a           25.723    Parent2   14.601    0.078      1.5        *        * 

LN96a            0.503    Parent1    6.836    0.941      0.0        *        * 

LN96b           22.604    Parent2    6.072    0.000      6.5     0.00   225.00 

NS92a            6.785    Parent1   19.424    0.727      0.1        *        * 
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SS92a           19.177    Parent2   12.515    0.125      1.1        *        * 

SS94a            6.379    Parent2   15.065    0.672      0.1        *        * 

 

 

QTL (Locus name): L071 

====================== 

 

 

Location: linkage group 4 position 136.6 

---------------------------------------- 

 

 

Environment     Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

HN96b           16.369    Parent1    4.525    0.000      0.6     0.00   167.50 

IS92a           16.369    Parent1    4.525    0.000      0.6     0.00   167.50 

IS94a           16.369    Parent1    4.525    0.000      0.6     0.00   167.50 

LN96a           16.369    Parent1    4.525    0.000      3.1     0.00   167.50 

LN96b           16.369    Parent1    4.525    0.000      3.4     0.00   167.50 

NS92a           16.369    Parent1    4.525    0.000      0.3     0.00   167.50 

SS92a           16.369    Parent1    4.525    0.000      0.8     0.00   167.50 

SS94a           16.369    Parent1    4.525    0.000      0.6     0.00   167.50 

 

 

QTL (Locus name): L043 

====================== 

 

 

Location: linkage group 6 position 125 

-------------------------------------- 

 

 

Environment     Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

HN96b           25.264    Parent1   12.629    0.045      1.4     6.20   158.70 

IS92a            4.852    Parent2   13.022    0.709      0.1        *        * 

IS94a            9.245    Parent2   13.783    0.502      0.2        *        * 

LN96a           15.021    Parent1    6.452    0.020      2.6     6.20   158.70 

LN96b           16.484    Parent2    5.731    0.004      3.5     6.20   158.70 

NS92a           43.761    Parent1   18.337    0.017      2.5     6.20   158.70 

SS92a            0.061    Parent2   11.814    0.996      0.0        *        * 

SS94a            0.341    Parent1   14.222    0.981      0.0        *        * 

 

 

QTL (Locus name): C10P60 

======================== 

 

 

Location: linkage group 10 position 60.15 

----------------------------------------- 
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Environment     Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

HN96b           92.604    Parent2   13.622    0.000     19.0    48.08    72.22 

IS92a           56.526    Parent2   14.045    0.000      7.5    48.08    72.22 

IS94a           43.053    Parent2   14.866    0.004      4.2    48.08    72.22 

LN96a            9.714    Parent2    6.964    0.163      1.1        *        * 

LN96b            7.852    Parent2    6.187    0.204      0.8        *        * 

NS92a           47.614    Parent2   19.776    0.016      2.9    48.08    72.22 

SS92a           13.875    Parent2   12.743    0.276      0.6        *        * 

SS94a           61.011    Parent2   15.339    0.000      8.2    48.08    72.22 

 

We’ve also requested several plots to be produced (see Figure 7.5). The first, Figure 

7.6, plots the significant QTLs on a genetic map. QTLs identified as having a significant 

QTL×E interaction are plotted in blue, and those with a non-significant interaction in red. 

 

 

Figure 7.6: Genetic map for the CIMMYT maize trials showing detected QTLs for yield. 
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The option Bar charts of additive effects produces two bar charts. The first plots the QTL 

additive effect for each QTL within each environment (Figure 7.7a). The second plots the 

QTL additive effect for each environment within the QTLs (Figure 7.7b). These graphs 

are useful for visualising the size of the QTL effect in each environment and the nature 

of the QTL×E interaction. For example, cross-over interactions (see Section 4.1.1) can be 

identified in Figure 7.7b for loci with large bars on either side of the origin (e.g. L085). 

Loci exhibiting divergent (or convergent) interactions are identified by bars pointing in 

the same direction, but with large differences in magnitude (e.g. C10P60). From Figure 

7.7a, environments with bars near the origin elicit only weak interactive forces (e.g. 

LN96a), whereas those with bars far from the origin elicit strong interactive forces (e.g. 

NS92a). 

 

a)

 

b)

 

 Figure 7.7: QTL additive effects for each a) QTL within each environment and b) environment 

within each QTL. 

 

7.3 Multiple trait single environment 

 

Conceptually there are no major differences between multiple trait (single environment) 

and multiple environment (single trait) QTL analyses. The latter can be viewed as a type 

of multiple-trait analysis, where the same trait observed in different environments is 

regarded as different traits. The key motivation for including a separate section on multi-
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trait QTL detection is to emphasize that, by default, the variance-covariance structure is 

always modelled using the unstructured form. This is because the multiple traits under 

consideration may be rather different in terms of scale and variation, making many of the 

variance-covariance models difficult to interpret or even meaningless. The only variance-

covariance model that is always meaningful in multi-trait QTL analysis is the 

unstructured model.  

The statistical models for multi-trait QTL detection are analogous to those presented 

in Section 7.2 for multiple environments. However, the environment effects (Ej, j = 1, 

…, m) are replaced by trait effects (Tk, k = 1, …, K). For example, the final multi-QTL 

model (with additive effects only) is expressed as: 

 

𝑦𝑖𝑘 = 𝜇 + 𝑇𝑘 + ∑ 𝛼𝑘𝑞𝑥𝑖𝑞𝑞∈𝑄 + 𝜀𝑖𝑘  +  𝑒𝑖𝑘 Equation 4 

where 

yik  is the trait k mean for genotype i  

µ is the overall mean 

Tk is the trait k main effect 

Q is the set of QTLs, q = 1, …, Q 

αkq is the effect of QTL q for trait k. 

xiq  is the genetic predictor of QTL q for genotype i 

ik  is the genetic residual of trait k for genotype i (or residual if unit errors are omitted) 

eik is the unit error of trait k for genotype i. 

The residuals, ik, representing the unexplained genotype and trait effects, are assumed 

be Normally distributed with mean 0 and variance-covariance structure VCOV(ik). 

VCOV is modelled explicitly using unstructured model, with Genotype fitted as a 

random term. The QTL (αkq, k = 1, …, K, q = 1, …, Q) and trait (Tk, k = 1, …, K) effects 

are fitted as fixed effects.  

The unit errors, eik, represent the uncertainty on the trait means (see Section 3.2). 

However, if estimates of the unit errors are no available, eik and and ik, cannot be 

separately estimated.  

We illustrate QTL analysis for multi-trait, single environment data sets using the 

Steptoe-Morex barley trial data (described in Section 1.3.1). The marker and map 

information for this double haploid population are held in Flapjack files SxM_geno.txt 

and SxM_map.txt, respectively. Import and inspect the marker and map data (referring 

to Sections 2.1.2.1 and 2.4.2.3). Remember to specify the population type as double-

haploid (DH1). Two phenotypic traits were measured: yield (yield) and heading date 
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(heading). The trait means are held in file SxM_pheno.csv. Use the Summary Statistics 

Between Traits menu to explore the correlations between the trait means (Section 2.4.1.3). 

The Multi-trait Linkage Analysis window (Figure 7.8) can be accessed by either: 

 Stats | QTLs (Linkage/Association) | QTL Analysis | Multi-trait Linkage Analysis (Single 

Environment); or, 

 in the QTL Data View via the shortcut QTL analysis | Multi-trait Linkage Analysis (Single 

Environment).  

Genstat will automatically populate the input fields using data from the QTL Data 

Space. The menu is similar to that for a single trait - single environment analysis except 

now multiple traits are entered in the Quantitative trait means: box (Figure 7.8). If unit errors 

are available they should be included in the analysis using the Include unit errors: field 

accessed via the Options button (refer to Figure 6.7). For multi-trait QTL analysis, any 

unit errors stored within the QTL Data Space for the different traits will be used. Refer to 

Chapter 6 for further details on the input fields and Options.  

 

 

Figure 7.8: Menu for performing a multi-trait, single environment QTL analysis on the 

quantitative traits yield and heading from the Steptoe-Morex barley trial.  
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The process for detecting QTLs is the same as for the single trait case (demonstrated 

in Chapter 6 and Section 7.2): 

1) candidate QTLs are identified using SIM (or marker regression), followed by one 

or more rounds of CIM;  

2) a final multi-QTL model is selected from the set of candidate QTLs.  

However, in contrast to the multiple environment case, partitioning QTL effects into main 

effects and QTL by trait (QTL×T) interactions is rarely meaningful, as the traits under 

consideration are usually measured in different units. 

In this example, after an initial genome-wide scan by SIM and five rounds of CIM 

(using step size of 10cM), 5 candidate QTLs are identified: 
 

The following candidates have been selected 

 

     Locus   IdLocus  Chromosome    Position 

        31      abg2           2        41.2 

        37    abc162           2        73.5 

        61   abg703a           3        83.6 

        94    C4P104           4       103.8 

       158       ale           7        68.2 

 

The profile plot, Figure 7.9, consists of two frames. The upper frame profiles the p-

values (on the -log10 scale) against linkage group position. Values above the threshold 

(red line) are indications that at least one of the traits is affected by a QTL at that 

chromosome position. In the lower frame you can read which of the traits are affected by 

a particular candidate QTL. The traits are listed on the Y-axis, with coloured points 

aligning to positions where the significance test for the QTL effect (here, additive) is 

larger than threshold. The points are coloured according to which parent provided the 

allele for a high value (i.e. the superior allele); blue denotes that the high value allele 

originates from parent 1 and red from parent 2. The intensity of the colour represents the 

magnitude of the effect.  

In this example, two candidate QTLs are identified on chromosome 2 (abg2 and 

abc162) - located at the two peaks exceeding threshold. The first, abg2, affects both 

traits, yield and heading, with the allele provided by parent 2 associated with a high 

value for both. In addition, the dark red colouring indicates that abg2 has a large effect 

on both traits. The second, abc162, located at the lower peak, only affects heading, 

with high heading values associated with the allele coming from parent 1. 
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Figure 7.9: Profile plot of the set of candidate QTLs following 1 round of SIM and 5 rounds of 

CIM, for Steptoe-Morex yield and heading data. Step size = 10cM. 

 

After a set of candidate QTLs has been defined, the final multi-QTL model can be 

selected. Click on the Select final QTL model button to open the Select Final Model (Multi-

trait) window. The options are the same as described for multiple environment analysis, 

except the variance-covariance model is set to unstructured (see Section 7.2). The list of 

candidate QTLs is automatically taken from the last genome-wide search, but you can 

modify this if you wish using the Candidate QTLs button.  

By default backward selection (with significance level 0.05) is used to select the final 

QTL model. In contrast to the multiple environment case, non-significant QTL by trait 

(QTL×T) interactions are always retained in the final model: as the traits are usually 

measured in different units, and likely differ in terms of scale and variation, simplification 

to QTL main effects is rarely meaningful. (Refer to Section 7.2 for a description of 

backward selection in a multiple environment analysis).  

Click Run to select and fit the final multi-QTL model. 
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The first section of the output summarizes the results from backward selection. In this 

example, all five candidate QTLs are significant and therefore included in the final multi-

QTL model. Note: the output also reports a non-significant QTL×T interaction at locus 

94 (C4P104), term _traitgroup.pred[94]. However, as our two traits are measured 

in different units, and weren’t standardized prior to analysis, tests of the QTL×T 

interactions are not of interest.  

 

QTL backward selection for loci in multi-trait trials 

===================================================== 

 

 

Summary 

======= 

 

Trait: _traits 

-------------- 

 

       Term  _traitgroup.pred[94] is removed from the model 

 

 

Significant terms 

----------------- 

 

  Locus      IdLocus Chromosome   Position Interaction 

     31         abg2          2      41.20           1 

     37       abc162          2      73.50           1 

     61      abg703a          3      83.60           1 

     94       C4P104          4     103.77           0 

    158          ale          7      68.20           1 

 

The second section of output summarizes the fit of the final multi-QTL model, 

including the estimated QTL effects for each trait. Note: because QTL main effects across 

multiple traits are not meaningful, the QTL×T interaction for C4P104 (locus 94) is 

retained in the final model.  

The significance of the QTL effect for each trait can be assessed using P, the p-value 

obtained by comparing (Effect)2/(s.e.)2 to a chi-square distribution on 1 df. The 

column High value allele indicates which parent provides the allele corresponding 

to the higher phenotypic response (i.e. superior allele). For example, the QTL detected on 

chromosome 2, abg2, has a significant additive effect on both heading (P = 0.000) and 

yield (P = 0.000). For both traits, the high value allele is provided by the Steptoe 

parent. Replacing a Morex allele with a Steptoe allele is expected to increase heading 

by 0.950 days (s.e.  = 0.042 days) and yield by 0.446 ton/ha (s.e. = 0.068 ton/ha). In 

comparison, the QTL detected on chromosome 3, abg703a, only significantly affects 
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yield. Here, replacing a Morex allele with a Steptoe allele is expected to decrease yield 

by 0.263 ton/ha (s.e. = 0.065 ton/ha). 

 

Estimation of QTL effects from a multi-trait trial 

================================================== 

 

 

REML variance components analysis 

================================= 

 

Response variate:  newy 

Fixed model:       Constant + _traitgroup + _traitgroup.pred[31] + 

_traitgroup.pred[37] + _traitgroup.pred[61] + _traitgroup.pred[94] + 

_traitgroup.pred[158] 

Random model:      _genotypes._traitgroup 

Number of units:   300 

 

_genotypes._traitgroup used as residual term with covariance structure as below 

 

Sparse algorithm with AI optimisation 

 

 

Covariance structures defined for random model 

---------------------------------------------- 

 

Covariance structures defined within terms: 

 

Term                    Factor      Model                      Order  No. rows 

_genotypes._traitgroup  _genotypes  Identity                       0       150 

                        _traitgroup Unstructured                   1         2 

 

 

Residual variance model 

----------------------- 

 

Term           Factor        Model(order)  Parameter        Estimate      s.e. 

_genotypes._traitgroup                     Sigma2              1.000     fixed 

               _genotypes    Identity      -                       -         - 

                traitgroup   Unstructured  v_11               0.2223    0.0262 

                                           v_21              0.05454    0.03051 

                                           v_22               0.5897    0.0695 

 

 

Tests for fixed effects 

----------------------- 

 

Sequentially adding terms to fixed model 

 

Fixed term               Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

_traitgroup                        0.00       1          0.00   144.0   1.000 
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_traitgroup.pred[31]             458.14       2        227.48   143.0  <0.001 

_traitgroup.pred[37]              57.13       2         28.37   143.0  <0.001 

_traitgroup.pred[61]              18.73       2          9.30   143.0  <0.001 

_traitgroup.pred[94]              21.07       2         10.46   143.0  <0.001 

_traitgroup.pred[158]             41.77       2         20.74   143.0  <0.001 

 

Dropping individual terms from full fixed model 

 

Fixed term               Wald statistic  n.d.f.   F statistic  d.d.f.    F pr 

_traitgroup.pred[31]             524.78       2        260.57   143.0  <0.001 

_traitgroup.pred[37]              52.90       2         26.27   143.0  <0.001 

_traitgroup.pred[61]              17.30       2          8.59   143.0  <0.001 

_traitgroup.pred[94]              20.34       2         10.10   143.0  <0.001 

_traitgroup.pred[158]             41.77       2         20.74   143.0  <0.001 

 

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated 

using algebraic derivatives ignoring fixed/boundary/singular variance 

parameters. 

 

 

Summary 

======= 

 

Population type: DH1 

Number of genotypes: 150 

Number of traits: 2 

Number of linkage groups: 7 

Number of markers: 116 

Variance-covariance model: UNSTRUCTURED 

 

List of QTLs 

============ 

 

 

Locus no.  Locus name           Linkage group  Position   -log10(P)     QTLxT 

       31  abg2                             2     41.20     113.955       yes 

       37  abc162                           2     73.50      11.487       yes 

       61  abg703a                          3     83.60       3.757       yes 

       94  C4P104                           4    103.77       4.418       yes 

      158  ale                              7     68.20       9.070       yes 

 

 

QTL (Locus name): abg2 

====================== 

 

 

Location: linkage group 2 position 41.2 

--------------------------------------- 

 

 

Trait           Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 
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                           allele                       var. 

heading          0.950    Steptoe    0.042    0.000     90.3    26.09    56.31 

yield            0.446    Steptoe    0.068    0.000     19.9    26.09    56.31 

 

 

QTL (Locus name): abc162 

======================== 

 

 

Location: linkage group 2 position 73.5 

--------------------------------------- 

 

 

Trait           Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

heading          0.306      Morex    0.042    0.000      9.3     0.00   183.10 

yield            0.102      Morex    0.069    0.137      1.0        *        * 

 

 

QTL (Locus name): abg703a 

========================= 

 

 

Location: linkage group 3 position 83.6 

--------------------------------------- 

 

 

Trait           Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

heading          0.064      Morex    0.040    0.112      0.4        *        * 

yield            0.263      Morex    0.065    0.000      6.9    16.30   205.00 

 

 

QTL (Locus name): C4P104 

======================== 

 

 

Location: linkage group 4 position 103.8 

---------------------------------------- 

 

 

Trait           Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

heading          0.180      Morex    0.044    0.000      3.3     1.40   168.40 

yield            0.184      Morex    0.072    0.011      3.4     1.40   168.40 

 

 

QTL (Locus name): ale 

===================== 
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Location: linkage group 7 position 68.2 

--------------------------------------- 

 

 

Trait           Effect High value     s.e.        P   %Expl.    CI_LL    CI_UL 

                           allele                       var. 

heading          0.061    Steptoe    0.039    0.119      0.4        *        * 

yield            0.409    Steptoe    0.064    0.000     16.8     4.70   191.20 

 

 

The significant QTLs are plotted on a genetic map in Figure 7.10. 

  

 

Figure 7.10: Genetic map for the Steptoe-Morex data showing detected QTLs for yield and 

heading. 

 

Two bar charts are given in Figure 7.11 - these are useful for visualising the size and 

nature of the QTL additive effects. The first plots the QTL additive effect for each QTL 

within each trait. The second plots the QTL additive effect for each trait within each QTL. 

In this example, for all QTLs the direction of the additive effect is the same for both traits 

(Figure 7.11b). However, within a trait, the magnitude differs considerably (Figure 

7.11a); for both yield and heading the largest (and positive) effect is associated with 
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abg2. QTL ale also has a large (and positive) effect on yield, although not on 

heading. 

 

a)

 

b)

 

Figure 7.11: QTL additive effects for each a) QTL within each trait and b) trait within each QTL. 
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8 Linkage analysis: cross pollinated populations 

 

8.1 QTL linkage analysis in Genstat 

 

In Genstat, linkage analysis is also possible for a cross-pollinated (CP) population derived 

from the cross of two heterozygous parents. This chapter provides a very brief overview 

of Genstat’s QTL facilities for cross-pollinated populations. A more comprehensive 

description will be made available in a later edition of the manual. 

For cross-pollinated populations, additive, 2nd parent additive and dominance genetic 

predictors can be calculated. These are obtained using the Stats | QTLs (Linkage/Association) 

| Genotypic Analysis | Calculate Genetic Predictors window (Figure 8.1). Note, the Calculate 

Genetic Predictors window can also be accessed from the QTL analysis menus by checking 

Generate automatically (see Figure 6.5, Figure 7.2, or Figure 7.8). By default the additive, 

2nd parent additive and dominance genetic predictors are saved in structures 

gp_additive, gp_additive2 and gp_dominance, respectively. 

 

 

Figure 8.1: Calculating additive, 2nd parent additive and dominance genetic predictors for a cross-

pollinated population using the Calculate Genetic Predictors menu. 



8  Linkage analysis: cross pollinated populations 

182 

 

 

QTL linkage analysis for a cross-pollinated population then proceeds as for an inbred 

population (refer to Chapters 6 and 7). Namely: first a putative QTL detection step, where 

the genome is searched for candidate QTLs (using marker regression or SIM, and 

preferably, CIM), followed by selection of a final multi-QTL model from the set of 

candidate QTLs.  

The models for detecting QTLs, described previously in Chapters 6 and 7, are readily 

modified to accommodate dominance effects and second parent additive effects. For 

example, the marker regression model of Section 6.1.2.1 (single trait, single environment) 

extended to include both dominance and second parent additive effects is expressed as:

  

𝑦𝑖 = 𝜇 + 𝛼𝑎𝑥𝑖
𝑎 + 𝛼𝑎2𝑥𝑖

𝑎2 + 𝛼𝑑𝑥𝑖
𝑑 + 𝜀𝑖  + 𝑒𝑖   

where 

yi  is the trait mean for genotype i  

αa is the additive QTL effect at the position being tested  

xi
a is the additive genetic predictor for genotype i at the position being tested  

αa2 is the additive QTL effect of the second parent at the position being tested  

xi
a2 is the additive genetic predictor of the second parent for genotype i at the position 

being tested  

αd is the dominance QTL effect at the position being tested 

xi
d is the dominance genetic predictor for genotype i at the position being tested 

i  is the genetic residual for genotype i (or residual if unit errors are omitted) 

ei is the unit error for genotype i. 

Note, if estimates of unit error (ei) are not unavailable, the term is omitted from the 

model and i now represents the residual. 

Genstat’s menus for a single trait – single environment (Figure 6.5), single trait – 

multiple environment (Figure 7.2) or multiple trait – single environment (Figure 7.8) QTL 

linkage analysis allow CP to be select in the Type of population: field. When CP is selected, 

the relevant fields to supply data structures for QTL linkage analysis on a cross-pollinated 

population will be enabled.
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9 Association mapping 

 

Association mapping, also known as linkage disequilibrium (LD) mapping, is a method 

for QTL detection. In contrast to QTL linkage analysis (Chapters 6, 7 and 8), it 

accommodates broader populations, searching for marker-trait associations in genetically 

diverse populations.  

Widely applied in human genetics, more recently association mapping has gained 

attention in plant breeding (Zhu et al., 2008). As there is no need to develop specific 

crosses, association mapping can take advantage of existing diverse collections of 

genotypes. In addition, it can target a broader and more relevant genetic spectrum for 

plant breeders than conventional QTL mapping.  

Association mapping essentially consists of finding marker-trait associations. 

However, the presence of population structure (i.e. genetic relatedness) can result in 

“spurious associations”. That is, where the marker-trait association is not linked to any 

causative loci. Several strategies have been proposed to account for genetic relatedness, 

either by stratifying the population into subpopulations (Pritchard et al., 2000a,b; 

Kraakman et al., 2004) or including estimates of genetic relatedness between genotypes, 

i.e. “kinship”, in the statistical model (Yu et al., 2006; Malosetti et al., 2007). 

Alternatively eigenanalysis, a method that approximates the use of the kinship matrix, 

can be used (Patterson et al., 2006). All three approaches are available in Genstat. 

This chapter describes association mapping for single trait-single environment data 

sets with bi-allelic markers. Association mapping for more complex data sets, i.e. from 

multiple environments and/or with multi-allelic markers, is briefly introduced in Sections 

9.5 and 9.6, respectively. 

 

In this chapter you will learn how to: 

 investigate population structure by means of eigenanalysis (Section 9.2) 

 investigate LD between neighbouring markers on the same chromosome using LD 

decay plots corrected for genetic relatedness (Section 9.3) 

 find marker-trait associations using mixed models that accommodate genetic 

relatedness using kinship information (Section 9.4.2), eigenanalysis (Section 

9.4.3) or a priori subpopulation groupings (Section 9.4.4) 

 perform association mapping on a single trait-single environment data set with 

biallelic markers (Section 9.4.5) 
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Throughout this chapter, association mapping in Genstat is illustrated using the 

MABDE barley association panel described in Section 1.3.4. Mean yields for each 

genotype are held in AMP_Barley_pheno.csv, along with subpopulation groupings. 

Marker scores and map information are held in files AMP_Barley_geno.txt and 

AMP_Barley_map.txt, respectively. When importing the genotypic data (see Section 

2.1) remember to specify the population type as Association mapping.  

The kinship matrix for the MABDE barley association panel is held in file 

AMP_Barley_Kmatrix.txt. Refer to Section 2.1.3 to load the kinship matrix and the 

subpopulation information. 
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9.1 Input data 

 

Three basic data files are necessary to perform association mapping: the map file, the 

genotype file, and the phenotype file (see Chapter 2). 

The genotype file contains genotype by marker (locus) scores. In Genstat, these scores 

are stored in m factors, one for each marker, and held in m_scores by default (see Section 

2.1.2). Prior to eigenanalysis, LD analysis and association mapping, the scores are 

converted to variates (genetic predictors) based on allele frequencies. For bi-allelic 

markers, the most frequent allele is chosen as the “reference” allele and the second as the 

“variant” allele. The genetic predictor, xi,m, is the number of variant alleles for marker m, 

genotype i. For example, the bi-allelic marker with reference allele A and variant allele 

B, takes the values 0, 1, 2 for AA, AB, and BB, respectively. For multi-allelic markers, 

refer to Section 9.6.  

The phenotypic data contains the quantitative traits (phenotypes) measured on all 

genotypes in the population. Association mapping in Genstat requires trait means for each 

genotype. If the raw plot (unit) data are available, read Chapter 3 to obtain trait means.  

In association mapping a fourth type of file containing genetic relationship 

information, either a kinship matrix or subpopulation grouping factor, can also be used 

(see Section 2.1.3). The kinship matrix contains the coefficient of co-ancestry between 

all pairs of genotypes in the population. The subpopulation factor groups similar 

genotypes (using for example, geographic origin, genetic relatedness, etc). 

Prior to analysis, it is important to ensure that the ordering of genotypes in the 

phenotypic, genotypic, and genetic relationship data sets are consistent (refer to Section 

2.3.1). 

 

9.2 Investigating population structure 

 

Linkage disequilibrium (LD) is the phenomenon where alleles at different loci are found 

together in the same gamete more or less frequently that expected based on their 

frequencies. That is, the “non-random association of alleles at different loci” (Flint-

Garcia et al., 2003). LD is affected by recombination and mutation rates, population size, 

and selection pressure. LD is the cornerstone of association mapping, where trait-marker 

relationships are identified from a population of heterogeneously-related individuals. 
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A crucial aspect of association mapping, and one of the major differences with 

conventional QTL linkage approaches, is that LD between markers, and between markers 

and QTLs, can occur even when there is no genetic linkage between them. A major source 

of LD not related to physical proximity between markers (or QTLs) is genetic relatedness 

between individuals in the population. Therefore, an important first step in association 

mapping is to investigate the genetic structure of the population. A popular method is the 

approach described by Pritchard et al. (2000a,b) and implemented in the program 

STRUCTURE, where subpopulation structure is inferred and individuals are assigned to 

groups. However, this approach can be computationally intensive. An alternative strategy 

suggested by Patterson et al. (2006), “eigenanalysis”, uses the scores of the most 

significant principal components to describe population structure.  

Eigenanalysis is a principal components method applied to the matrix of genotype by 

marker scores (after conversion to variates, see Section 9.1). The method infers the 

underlying genetic substructure in the population, effectively approximating the kinship 

matrix. For each marker, missing genetic predictors are replaced by the mean. The Tracy-

Widom statistic is used to determine the number of significant principal components.  

We investigate the structure of the MABDE barley population, described in Section 

1.3.4, using eigenanalysis. The Eigenanalysis window (Figure 9.1) can be accessed either: 

 by Stats | QTLs (Linkage/Association) | Genotypic Analysis | Eigenanalysis; or, 

 from the QTL Data View via the shortcut Genotypic analysis | Eigenanalysis.  

 

 

Figure 9.1: Eigenanalysis and Eigenanalysis Options windows. 
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In the Data: field select the pointer that contains the marker scores (in this example, 

m_scores). The Significance level: for the Tracy-Widom test defaults to 0.05. In the 

Eigenanalysis Options window (Figure 9.1) you can specify whether to scale the principal 

component scores by the square root of their singular values (the default) and whether to 

standardize the scores, prior to analysis, according to frequencies (also the default). The 

output produced is controlled by the Display and Graphics panes. 

The Summary output displays the significant principal components (i.e. axes), their 

associated Tracy-Widom statistic, eigenvalue and percentage variation they explain. The 

cumulative percentage variance explained is also given. In this example, four significant 

principal components were found that collectively explain 35.78% of the variation in the 

MABDE barley marker score data. 

 

Detection of significant principal components 

============================================= 

 

 

Summary 

======= 

 

 

Number of significant axes = 4 

 

            Tracy-                          Cumulative 

             Widom               %Variance   %variance 

  Axis   statistic  Eigenvalue   explained   explained 

axis 1       20.92       68843       11.86       11.86 

axis 2       23.95       64541       11.12       22.99 

axis 3       10.66       42266        7.28       30.27 

axis 4        4.13       31977        5.51       35.78 

 

The option Scores (not selected here; Figure 9.1) outputs the scores of the significant 

principal components. Plot eigenvalues graphs the eigenvalues against the number of 

principal components, useful for understanding how the size of the eigenvalue depreciates 

(Figure 9.2a). Plot percentage variances graphs the percentage and cumulative percentage 

of the variance explained against the number of principal components (Figure 9.2b). This 

plot is useful for visualising how the gains in variation explained diminish as the number 

of components increase.  

The Store button on the Eigenanalysis Options window (Figure 9.1) opens a menu to 

enable results from an eigenanalysis (Scores, Eigenvalues, Percentage variances and 

Cumulative percentage variances) to be saved.  
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a)

 

b)

 

 

Figure 9.2: Graphical output from an eigenanalysis of the MABDE barley marker score data. Plot 

of a) eigenvalues and b) variance explained against the number of principal components. 

 

9.3 Investigating LD decay along chromosomes 

 

LD is affected by recombination. An important advantage of association mapping is that 

it profits from a long history of recombination events in the population. The longer the 

recombination history, the faster the LD between neighbouring markers will decay. A fast 

LD decay implies that only tightly linked markers will remain associated to QTLs.  

LD decay plots are a useful tool for investigating LD in relation to map distance. As 

the correlation between alleles at a pair of marker loci is a measure LD, a common 

approach is to calculate r2 values (square of the correlation coefficients) between the 

genetic predictors of markers and plot them against marker distance. However, a major 

drawback of this approach is that it takes no account of genetic relatedness between 

individuals in the population. High r2 values between unlinked markers may be the 

consequence of genetic relatedness and not of a short physical distance. This leads to an 

overestimation of LD between markers.  

Genstat can be used to calculate LD between markers on the same chromosome whilst 

accounting for genetic relatedness. The approach fits a linear regression to pairs of 
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markers, where the genetic predictors of one marker are taken as the response variate and 

the genetic predictors of the other as the explanatory variate. The information on genetic 

relatedness is included by either a grouping factor indicating subpopulations of genotypes 

(for example, based on geographical origin, or groups from STRUCTURE (Pritchard et 

al., 2000a)), or covariables from the scores of the significant principal components 

selected by eigenanalysis (see Section 9.2). The association between markers is assessed 

by the deviance ratio between the models with and without the explanatory genetic 

predictor variable. From each fitted regression, the r2 value is stored as the measure of 

LD between markers on the same chromosome. 

The Linkage Disequilibrium (LD) Decay window (Figure 9.3) can be opened either: 

 by Stats | QTLs (Linkage/Association) | Genotypic Analysis | Linkage Disequilibrium (LD) 

Decay; or, 

 from the QTL Data View via the shortcut Genotypic analysis | Linkage Disequilibrium 

(LD) Decay.  

 

 

Figure 9.3: Linkage Disequilibrium (LD) Decay and Linkage Disequilibrium Options windows. 

 

Genstat will automatically populate the genotypic input fields using information in the 

QTL Data Space. In the Relationship model box we specify the approach to account for 

genetic relatedness. We’ll first select Eigenanalysis.  

LD is estimated per chromosome (i.e. linkage group), and the chromosome to analyse 

must be specified in the Linkage group to analyse: field. In this case, we select chromosome 

2. Results from an LD analysis (distances and r2 between markers) can be saved via the 

menu accessed from the Store button. 
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Two plots can be requested in the Linkage Disequilibrium Options window (Figure 9.3); 

Plot decay (the default), a graph of r2 against marker distance (Figure 9.4a), and LD Matrix, 

a shade plot of the p-values for the deviance ratios, on the -log10 scale (Figure 9.4b). 

Although LD is calculated along the whole of the chromosome, LD is expected to decay 

within relatively short distances. Therefore, in the Linkage Disequilibrium Options (Figure 

9.3) you can specify the Maximum distance between markers: for which r2 is displayed in 

the decay plot; default 30cM. In this example, LD has decayed substantially by 5cM 

(Figure 9.4a). 

Each cell in the shade plot (Figure 9.4b) represents the LD between a pair of markers 

on chromosome 2, starting with markers 1 vrs 147 in the lower left corner. The colours 

represent the strength of the LD between markers: higher log10(p-value), the brighter the 

red, the stronger the LD. We expect highest LDs near the diagonal, where closely 

neighbouring markers are plotted.  

 

a) 

 

b) 

 

Figure 9.4: Graphical output from an LD analysis of the MABDE barley marker score data for 

chromosome 2. a) decay plot, b) shade plot. Information on genetic relatedness is included as 

covariables from eigenanalysis. 

 

Note, LD is not calculated between markers with too many missing values, by default 

more than 20%. This option cannot be changed via the menus, but can be specified using 

the MAX%MISSING option in the command line. 
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Genstat’s LD analysis can also accommodate an a priori population structure by 

providing a Subpopulation groupings factor (Figure 9.3). For this example, the factor 

group subsets the 179 genotypes of the MABDE barley panel into 5 groups, ranging in 

size from 14 to 53 genotypes. The decay and shade plots under this alternative 

specification for the Relationship model are given Figure 9.5a and b, respectively. In this 

case, the plots are very similar to those produced using the eigenanalysis correction 

(Figure 9.4), indicating that group is capturing similar population structure as the 

significant principal components. 

It is also possible to perform LD analysis without any correction for genetic relatedness 

by selecting Null as the relationship model. When no correction for genetic relatedness is 

made, the LD decay plot (Figure 9.5c) reveals high LD not only in physically close 

markers (i.e. < 5cM) but also between markers physically distant from one another. The 

shade plot (Figure 9.5d) shows high LD between markers all along the linkage group. 

This is indicative of population structure. Providing a sensible relationship model clearly 

diminishes the effect of genetic relatedness on LD, with fewer occurrences of high LD at 

distances greater than 5cM (Figure 9.4 and Figure 9.5a, b). Once the relationships within 

the population are accommodated, the majority of high LD values occur where the 

physical distances between markers are small (i.e. the red clusters near the diagonals in 

Figure 9.4b and Figure 9.5b). 

 

a) 

 

b) 

 



9  Association mapping 

192 

 

c) 

 

d) 

 

Figure 9.5: Graphical output from LD analyses of the MABDE barley chromosome 2 data: a) and 

b) are decay and shade plots, respectively, from the analysis with genetic relatedness modelled by 

a priori subpopulations, c) and d) are decay and shade plots, respectively, from the analysis 

without any correction for genetic relatedness. 

 

9.4 Marker-trait association analysis 

 

In Section 9.3, we demonstrated that LD between markers can be inflated by genetic 

relatedness. Similarly, a statistical association between a marker and a QTL can be the 

consequence of genetic relatedness. Therefore, models used to test for marker-trait 

associations must correct for genetic relatedness. Within Genstat, association mapping 

accommodates genetic relatedness by including in the mixed model either:  

1)  a kinship matrix with coefficients of co-ancestry between genotypes (Yu et al., 2006; 

Malosetti et al., 2007) 

2)  scores of the significant principal components (Section 9.2) as covariables (Price et 

al., 2006; Patterson et al., 2006)  

3)  a factor indicating subpopulation membership for each genotype (Zhao et al. 2007; 

Pasam et al. 2012) 

It is also possible to run an analysis without correction for genetic relatedness (i.e. a 

naïve analysis). Such an analysis is generally only useful for purposes of comparison. We 
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describe the underlying statistical model for each strategy in turn, before illustrating 

marker-trait association analysis using the MABDE barley panel data. 

Genstat performs association mapping in the mixed model framework, fitting markers 

as fixed and genotypes as random using REML (Malosetti et al., 2007). Trait means (yi) 

are used as input. If the raw plot (unit) data are available, read Chapter 3 to obtain trait 

means. 

 

 The null (naïve) model 

Under the assumption of homogeneous genetic relatedness, the mixed model for marker-

trait association analysis on a single-environment data set with bi-allelic markers can be 

expressed as: 

𝑦𝑖 = 𝜇 + 𝛼𝑥𝑖 + (𝐺𝑖 + 𝜀𝑖), Equation 1 

where 

yi  is the trait mean for genotype i  

µ is the overall mean 

α is the marker effect at the position being tested  

xi is the genetic predictor for genotype i at the marker position being tested (for bi-

allelic markers xi ∈ (0,1,2)) 

Gi  is the genotype i effect  

i  is the error for genotype i. 

The parentheses around the error, i, and the random genotype effect, Gi, denote that 

these two terms cannot be separately estimated. Their joint effect (Gi + i), the residual, 

is assumed to arise from a Normal distribution with mean 0 and variance 𝜎2 . This imposes 

a genetic variance-covariance structure, VCOV(Gi), that assumes no genetic relatedness 

(or population structure) between genotypes. That is, for n genotypes  

VCOV(𝑮𝑖) = 𝐈𝑛𝜎2 , 

an n×n matrix with 𝜎2  on the diagonals and zeroes on the off-diagonals.  

 

 Kinship model 

The assumption of no genetic relatedness is unrealistic for the majority of association 

mapping panels, as most cultivar collections share some degree of relatedness. The 

kinship model provides an alternative parameterization for VCOV(Gi), with off-diagonal 

values determined by the degree of relatedness between the genotypes. 
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The kinship matrix, K, is a symmetric n×n matrix with 1s on the diagonal and co-

ancestry coefficients (0 ≤ θ ≤ 1) between all pairs of genotypes elsewhere. Assuming an 

additive genetic model, the genetic covariance between genotypes i and 𝑖∗ with 

coefficient of co-ancestry θ𝑖𝑖∗  is: COV(𝑖, 𝑖∗) = 2θ𝑖𝑖∗𝜎𝑔
2 (see Lynch and Walsh, 1998). 

Therefore, in the kinship model the genetic variance-covariance matrix takes the form: 

VCOV(𝑮𝑖) = 2𝐊𝜎𝑔
2. 

 

9.4.2.1 Forming a kinship matrix in Genstat 

The Form Kinship Matrix menu can be used to construct a kinship matrix from marker 

scores. The coefficients of co-ancestries are calculated using either the Dice similarity 

measure or by simple Correlation. The menu is accessed from Stats | QTLs 

(Linkage/Association) | Genotypic Analysis | Form Kinship Matrix; or, in the QTL Data View via 

the shortcut Genotypic analysis | Form Kinship Matrix.  

 

 Eigenanalysis model 

An alternative approach to modelling the genetic variance-covariance matrix, VCOV(Gi), 

is to use molecular marker data to group like genotypes. Eigenanalysis, where the 

resulting principal component scores represent population structure, is one such method 

(see Section 9.2). The eigenanalysis method, which effectively approximates the 

structuring of VCOV(Gi) by the kinship matrix, is less computationally intensive than the 

kinship model (Section 9.4.2).  

The eigenanalysis model accommodates population structure by including as 

covariables the significant principal component scores (Patterson et al., 2006) in the 

mixed model. The mixed model can be expressed as: 

𝑦𝑖 = 𝜇 + 𝛼𝑥𝑖 + ∑ 𝛼𝑑
∗𝑃𝑖,𝑑

𝐷
𝑑=1 + (𝐺𝑖 + 𝜀𝑖), Equation 2 

where 

Pi,d  is the dth principal component score for genotype i  

𝛼𝑑
∗  the effect associated with the dth principal component 

D is the number of significant principal components (d = 1, …, D). 

All other terms are as described in Equation 1 (Section 9.4.1). 

The effects associated with the D principal components (𝛼1
∗, … , 𝛼𝐷

∗ ) can be modelled 

either as fixed terms or random terms (with variance 𝜎𝑑
2).  
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 Subpopulation model 

The mixed model platform can also incorporate population structure by stratifying the 

population using a previously determined subpopulation grouping factor. Correlation 

structure on the genotypes can be imposed by including the subpopulation factor as a 

random (or fixed) effect in the mixed model: 

𝑦𝑖(𝑘) = 𝜇 + 𝛼𝑥𝑖(𝑘) + 𝑆𝑘 + (𝐺𝑖(𝑘) + 𝜀𝑖(𝑘)), Equation 3 

where 

Sk  is effect of the kth subpopulation (k = 1, …, K) 

i(k) denotes that genotype i is nested within subpopulation k. 

All other terms are as described in Equation 1 (Section 9.4.1). 

The subpopulation effects (S1, …, SK), modelled as a random with variance 𝜎𝑘
2, impose 

equal correlations between genotypes within the same subpopulation, whilst genotypes in 

different subpopulations are assumed uncorrelated. Alternatively, population structure 

can be accommodated by fitting the subpopulation effects as fixed. 

Subpopulations may derive from program STRUCTURE, which uses molecular 

marker information within a Bayesian framework to infer population structure 

(http://pritchardlab.stanford.edu/structure.html), or be based on, for example, geographic 

origin. 

 

 Association analysis in Genstat 

Genstat performs genome-wide marker-trait association scans by testing the significance 

of the marker effect (α, a proxy for the QTL effect) using a marginal Wald test (Section 

10.6; Searle et al., 1992; Verbeke and Molenberghs, 2000) at each marker location.  

The Single Trait Association Analysis window (Figure 9.6) can be accessed from: 

 Stats | QTLs (Linkage/Association) | QTL Analysis | Single Trait Association Analysis 

(Single Environment); or, 

 in the QTL Data View via the shortcut QTL analysis | Single Trait Association Analysis 

(Single Environment). 

 

http://pritchardlab.stanford.edu/structure.html
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Figure 9.6: Single Trait Association Analysis window. 

 

The trait for analysis, in this case yield, is specified in the Quantitative trait means: 

field. The fields for Genotype factor:, Marker genotype scores:, Linkage groups:, Position within 

linkage group:, Marker names:, and Labels for genotypes: will be automatically filled using 

data in the QTL Data Space. The Relationship model, accounting for genetic relatedness 

between genotypes, defaults to Eigenanalysis, but you can change this to the model of your 

choice. Selecting Kinship matrix requires the coefficient of co-ancestry matrix, here 

m_kinship, to be specified (Figure 9.7a), whereas selecting Subpopulation grouping 

requires the subpopulation grouping factor, here group, to be specified (Figure 9.7b).  

 

a)

 

b)

 

Figure 9.7: Specifying the model to account for genetic relatedness between genotypes. a) kinship 

model and b) subpopulation model. 
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Click the Options button to open the Association Analysis Options window (Figure 9.8). 

 

 

Figure 9.8: Association Analysis Options window for a single environment data set. 

 

The output produced is controlled by the Display and Graphics panes. 

As association mapping involves conducting multiple significance tests along the 

genome, the Threshold box is used to specify a method to adjust for multiple comparisons. 

The Bonferroni method calculates the effective number of tests, assuming independent 

tests occur at a fixed distance along the genome. This distance (in cM) is specified in the 

Distance between loci: field. A study of LD decay (see Section 9.3) helps inform the 

appropriate distance, i.e. the distance at which LD is no longer high (in this example, 

~5cM). If the distance is not set, an independent test is assumed at every marker, a very 
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conservative assumption in most cases. Alternatively, Effective marker matrix dimension 

determines the effective number of columns (nC) in the marker matrix data, using the 

estimator given by Patterson et al. (2006), and calculates the threshold as -log10(
𝑎𝑙𝑝ℎ𝑎

𝑛𝐶
). 

The parameter alpha is the genome-wide Type I error rate, which is specified in the field 

Genome-wide significance level (alpha): (default 0.05). Finally, a user-defined threshold (on 

the -log10 scale) can be set in the Specify: field. The default 2 is equivalent to alpha = 0.01. 

The pane Method for fitting marker-trait association models provides two model fitting 

options; Exact or Fast. The Exact method solves the mixed model for each marker 

separately. Conversely under the Fast method, the mixed model is only solved for the 

genetic background model, i.e. the model without markers. The estimated variance-

covariance matrix from the genetic background model is then used to perform a 

generalized least squares scan for all the markers. Note, the Fast method can only be 

implemented for bi-allelic markers. 

When the Exact method is used, the principal components scores and the subpopulation 

factor (if the relationship model is set to Eigenanalysis or Subpopulation groupings, 

respectively) can be included as either Random or Fixed terms in the mixed model. The 

Model part for PCA scores or subpopulation factor box controls this setting; default Random. 

Under the Fast method, they are always fitted as random. 

The Frequency of minor alleles: field specifies the frequency q below which alleles are 

considered “rare” (default 0.05). For multi-allelic markers, rare alleles are pooled 

together. Markers whose most frequent allele occurs ≥ (1-q)×100% of the time are 

considered close to fixation and not used in the analysis. 

Scaling and standardizing of the genetic predictors is controlled using the options Scale 

the scores by the square roots of their singular values and Standardize the marker scores 

according to their frequencies, respectively. 

The Store button opens the Association Analysis Store Options window (Figure 9.9) 

allowing you to save results from the analysis (i.e. marginal Wald statistics and associated 

-log10(p-values), and information and results from the significant markers). Names for the 

saved data structures need to be specified in the corresponding In: fields. Checking Display 

in Spreadsheet displays the saved results within a new spreadsheet. 
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Figure 9.9: Association Analysis Store Options window. 

 

We perform an association mapping analysis, using Eigenanalysis, on the MABDE 

barley data (Section 1.3.4) with the options shown in Figure 9.8. The first section of 

output provides some summary information on the MABDE data, and describes the 

model and options used in analysis.  

 

Status: fitting mixed model without marker information. 

 

Status: performing GWAS scan. 

 

Summary of marker-trait association results 

=========================================== 

 

 

Trait: yield 

Number of markers: 811 

Number of linkage groups: 7 

Number of genotypes: 179 

 

GWAS model: EIGENANALYSIS 

Substructure covariable/factor: RANDOM 

GWAS method: FAST 

Threshold method: NEFFECTIVE 

Number of assumed independent tests: 28.13 

 

Threshold for significance: 2.75 

Inflation factor (lambda): 1.363 

CPU time for data preparation: 0:00:17 

CPU time for GWAS scan: 0:00:00 
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The second section lists the markers with a significant association with the trait of 

interest. Here, two markers, one on chromosome 5 (D5042) and one on chromosome 7 

(D7050) are significantly associated with yield.  
 

List of significant marker-trait associations 

============================================= 

 

 

     Index  Marker   Linkage  Position -log10(P)     Number 

                       group                     of alleles 

       507 D5042           5      74.5     3.728          2 

       729 D7050           7      72.4     2.881          2 

 

The final section of output provides estimates of the marker effects (from the 

significant marker-trait association). Values reported under the Frequency, Effect and 

Std.error columns correspond to the allele given in the Allele column. In this case, 

at marker D5042 allele 1 occurs with frequency 0.33. The estimated effect at D5042 is 

0.2139 with standard error 0.0582. Therefore replacing allele 0 by allele 1 at D5042 is 

expected to result in an increase yield of 0.2139 units.  
 

   IndexMarker  Reference    Allele Frequency    Effect Std. error 

                   allele 

     507 D5042          0         1    0.3296    0.2139     0.0582 

     729 D7050          1         0    0.3128   -0.2294     0.0721 

 

The profile plot displays p-values (on the -log10 scale) from marginal Wald tests of the 

marker effects (α) along the chromosomes (Figure 9.10). Each chromosome (or linkage 

group) is depicted by a different colour. The red horizontal line represents the threshold 

level, above which the null hypothesis of no marker effect is rejected. In this example, 

the Effective marker matrix dimension method was used (see Figure 9.8), resulting in a 

significance threshold of 2.75. 
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Figure 9.10: Profile plot from association mapping (using eigenanalysis) of yield for the 

MABDE barley data. 

 

In Figure 9.11 the significant markers (“QTLs”) are plotted on a genetic map. 

 

 

Figure 9.11: Genetic map of the MABDE barley data with the two detected QTLs shown. 

 

Figure 9.12 gives the quantile-quantile (QQ) plot of the -log10(p-values) from marginal 

Wald tests. The QQ plot graphically represents the deviations of the observed p-values 

from the null hypothesis of no association. Deviations from the diagonal line suggest that 

either the null hypothesis is incorrect, population structure (i.e. genetic relatedness) has 

not been corrected for, or the presence of a very highly associated region containing many 

markers. The effect of not correcting for population structure is clearly demonstrated in 
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the QQ plot from the naïve analysis (Figure 9.13), i.e. where the relationship model is set 

to Null. Here, the large deviations are indicative of spurious associations. Note, a sharp 

and sudden series of deviations would indicate the presence of a very highly associated 

region containing many markers. 

 

 

Figure 9.12: QQ plot from association mapping (using eigenanalysis) of the MABDE  

barley data.  

 

 

Figure 9.13: QQ plot from association mapping of the MABDE barley data where no correction 

is made for population structure. 
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9.5 Multi-environment marker-trait association mapping 

 

Genstat also allows association mapping in multiple environments. The menus and 

statistical methodology are similar to the single environment case. However, now the 

genome-wide scan tests for both marker main effects (a proxy for QTL main effects) and 

marker by environment interactions (a proxy for QTL×E interactions). Also, importantly, 

an appropriate variance-covariance model for describing the variation between genotypes 

both across and within environments must be specified. 

The Single Trait Association Analysis (Multiple Enviro window (Figure 9.14) can be 

accessed from either via Stats | QTLs (Linkage/Association) | QTL Analysis | Single Trait 

Association Analysis (Multiple Environment); or, in the QTL Data View via the shortcut QTL 

analysis | Single Trait Association Analysis (Multiple Environment).  

Genstat will automatically populate the input fields using data from the QTL Data 

Space. The menu is similar to that of the single environment analysis (Figure 9.6) except 

for the addition of the Environment Factor: and Variance-covariance model: fields. Also note 

that the kinship method to account for genetic relatedness (Section 9.4.2) is not available 

in the multiple environment context. 
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Figure 9.14: Menu window for multiple environment marker-trait association analysis. 

 

In the Variance-covariance model: field the variance-covariance structure for modelling 

the variation between genotypes both across and within environments is selected (see 

Section 4.1.3). If you’ve previously performed a genotype by environment analysis (as 

described in Chapter 4), you can select this model here. If not, the Select best setting will 

automatically select the best variance-covariance model according to the criterion set in 

the Association Analysis Options window (Figure 9.15): either Schwarz information criterion 

(SIC) or Akaike information criterion (AIC).  

In the Association Analysis Options window you can also specify what output to display, 

the threshold value above which the null hypothesis of no marker effect is rejected, 

whether to fit the PCA scores or subpopulation factor as fixed or random, the frequency 

below which alleles are considered rare, how to scale and standardize the genetic 

predictors, and which graphics to produce. The default threshold is 2, equivalent to alpha 

= 0.01. However, you may find this too liberal and opt to increase the threshold level to 

decrease the probability of detecting non-significant markers. 
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Figure 9.15: Association Analysis Options window for a multiple environment data set. 

 

The genome-wide scan comprises 2 steps: 

1) a Wald test is used for each marker, individually, to test the null hypothesis that the 

marker effect is zero in every environment 

2) if the null hypothesis is rejected, a second test is performed to check whether the 

marker-by-environment interaction is significant.  

Full documentation is provided within the Genstat Help System ( ). Refer to 

procedure QMASSOCIATION.  

 

9.6 Multi-allelic markers 

 

In the previous sections, association mapping was described for bi-allelic markers, such 

as SNPs. However, Genstat’s facilities can also accommodate multi-allelic markers. Here, 

the genetic predictor takes the form of a matrix of allele frequencies instead of a variate. 

The most frequent allele is set as the reference level. Eigenanalysis (Section 9.2), LD 

analysis (Section 9.3), and association mapping (Section 9.4) then proceed analogously 

to that previously described. 

For example, consider a marker with three alleles: A, B, and C. Setting allele A as the 

“reference” allele, the genetic predictor matrix for genotypes AA, BB, CC, AB, AC, BC 

(in this order) is: 

[
 
 
 
 
 
0 0
2 0
0 2
1 0
0 1
1 1]

 
 
 
 
 

 , 

where the first column corresponds to the number of B alleles, and the second to the 

number of C alleles.  
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10 Introduction to linear mixed models 

 

In this chapter, we provide a brief introduction to linear mixed models and their 

implementation in Genstat. Within the QTL system, linear mixed models are used for 

both preliminary analysis and QTL detection, and this chapter can be used as a reference 

for the underlying methods and models. It may be skipped on a first reading. More 

detailed information on linear mixed models and REML estimation can be found in A 

Guide to REML in Genstat. Here, we focus on the aspects most relevant to the QTL 

system, using analysis of a simple field trial as an example.  

 

In this chapter you will learn: 

 the form of a linear mixed model 

 the distinction between fixed and random terms 

 how to interpret the random model 

 how to compare the fit of different random models 

 how to assess the importance of fixed model terms  

 how to check the model assumptions 

 a recipe for identification of a suitable linear mixed model for a designed 

experiment 
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10.1 The linear mixed model 

 

A linear mixed model is specified using two components, known as the fixed and random 

models. In general, the choice of which terms to classify as fixed and which as random 

may depend on the aims of the analysis. From the perspective of designed experiments, 

terms representing experimental treatments are usually assigned as fixed, and terms 

associated with the randomization structure of the design are assigned as random. In 

general, fixed terms often represent the effect of specific conditions applied or chosen for 

the experiment, i.e. the experimental treatments. Random terms often represent terms 

where the conditions observed comprise a sample from some wider population, and it is 

the variability of the population that is of interest. The structural (or randomized) 

components of an experimental design, such as blocks and plots, can usually be argued 

to fall into this category.  

As an example, we use the CIMMYT spring wheat trials described in Section 1.3.3. 

These trials tested 169 lines of spring wheat using two replicates of a lattice design. We 

will consider the data from trial HEAT05, data contained in Genstat spreadsheet file 

SB_HEAT05.gwb. In a standard analysis of this trial, the 169 lines (factor Genotype) 

would be considered as a set of fixed effects. The design consists of two replicates (factor 

Rep), each containing 13 sub-blocks (factor Subblock) with 13 plots. This gives a nested 

blocking structure, written as Rep/Subblock. The two components of the model can 

therefore be written as 

 

Fixed model: Genotype 

Random model: Rep/Subblock  (Model 1) 

 

Occasionally, other arguments are used to assign terms as random rather than fixed. 

One reason for this is that predicted random effects can be more precise than fixed effects 

- this is explained further in Section 10.5 below. If precision is the most important criteria 

for a prediction, then it may be preferable to assign terms as random. This argument is 

often used in plant breeding trials, where genotypes may be assigned as random in order 

to increase precision and avoid selection bias. In that case, the two components of the 

model are written as 

 

Fixed model:  

Random model: Genotype + Rep/Subblock  (Model 2) 
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Note that a constant term will automatically be added to the fixed model by default. 

The response variate (called the Y-variate in Genstat) is required to complete specification 

of the model. 

In a simple model, the effects associated with each random term and the residual term 

are assumed to be a set of independent samples from a Normal distribution. Effects within 

each term have a common variance, which is known as the variance component for that 

term. In addition, it is assumed that effects from different random terms are independent.  

For the HEAT05 trial, Model 1 (genotypes fixed, design factors random) can be written 

in terms of the individual observations as 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝐺𝑔(𝑖𝑗𝑘) + 𝑅𝑖 + 𝐵𝑖𝑗 + 𝑒𝑖𝑗𝑘 (Model 1) 

 

where 

 there are 338 observations, labelled by the replicate (i = 1,2), sub-block within replicate 

(j = 1, …, 13) and plot within sub-block (k = 1, …, 13) 

 yijk is the observed response on the kth plot within the jth sub-block within the ith 

replicate 

 μ is a constant (or intercept) term 

 Gg is the effect of the gth genotype  

 g(ijk) indicates the genotype randomly allocated to the ijkth plot 

 Ri is the random effect associated with the ith replicate with variance component 𝜎𝑅
2 

 Bij is the random effect associated with the jth sub-block in the ith replicate with 

variance component 𝜎𝐵
2 

 eijk is the random deviation for the kth plot within the jth sub-block within the ith 

replicate, with residual variance 𝜎2 . 

 

There are two fixed terms here: the constant (μ) and the set of genotype effects (Gg, g 

= 1, …, 169). The fixed model uses first-level-zero parameterization (see Genstat 

Statistics Guide, Section 5.2.2, for further details) so μ estimates the predicted mean for 

the first genotype, G1 is constrained equal to zero, and Gn represents the effect of 

genotype n as a deviation from the first genotype. There are two random terms: the set of 

2 replicate effects (Ri) and the set of 26 replicate by sub-block effects (Bij), plus the 

residual term (deviations). 

This model can be fitted using the Stats | Mixed Models (REML) | Linear Mixed Models 

menu (Figure 10.1 and Figure 10.2).  
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Figure 10.1: Accessing the Linear Mixed Models menu. 

 

 

Figure 10.2: The Linear Mixed Models menu. 
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If we choose to display the Model and Variance Components, using the Options button, 

then we obtain the following output: 

 

REML variance components analysis 

================================= 

 

Response variate:  yield 

Fixed model:       Constant + Genotype 

Random model:      Rep + Rep.Subblock 

Number of units:   338 

 

Residual term has been added to model 

 

Sparse algorithm with AI optimisation 

 

 

Estimated variance components 

----------------------------- 

 

Random term               component        s.e. 

Rep                          1215.9      1742.7 

Rep.Subblock                  179.3        71.2 

 

 

Residual variance model 

----------------------- 

 

Term               Model(order)  Parameter        Estimate      s.e. 

Residual           Identity      Sigma2              428.7      50.5 

 

The output starts with the model summary. The constant is automatically added into 

the model, and so there are two fixed terms, Constant and Genotype. There are two 

random terms, Rep and Rep.Subblock, and a residual term has been automatically 

added into the model. The variance components for the random terms are listed together. 

The variance component for the Rep term, i.e. the variance of the replicate effects (Ri), is 

estimated as 1215.9, and the variance component for the Rep.Subblock term, i.e. the 

variance of the sub-block effects (Bij), is estimated as 179.3. The residual variance is listed 

separately, and is estimated as 428.7. Interpretation of these values is considered in 

Section 10.2. 

The estimated parameters of the linear mixed model are the set of fixed effects and the 

variance parameters. The random effects have a slightly different status, which is 

discussed further in Section 10.5. Variance parameters are estimated by REML (residual 

maximum likelihood, also called restricted maximum likelihood), a method introduced 

by Patterson & Thompson (1971). The fixed effects are then estimated by the method of 
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generalized least squares, conditional on the estimated values of the variance components. 

One advantage of the REML method is that it gives the same estimates of fixed effects 

and their standard error of the differences (SEDs) as obtained from multi-stratum 

ANOVA when the structure is balanced and, where treatment information is divided 

across strata, estimates will be combined efficiently across strata into a single estimate 

(see A Guide to REML in Genstat for further details).  

 

10.2 Understanding the random model 

 

In a simple random model, with uncorrelated effects, the variance components associated 

with the random terms generate a variance-covariance matrix for the observations. The 

variance of an observation is equal to the sum of the variance components and it can be 

derived from the algebraic form of the model: the variance of the fixed effects is zero, 

and the variance of each random effect is equal to its variance component. The covariance 

between any two observations depends on the number of random effects held in common 

across the observations, and is the sum of the variance components for these common 

random effects.  

For the HEAT05 field trial, with Genotype fitted a fixed effect and Rep and 

Rep.Subblock effects fitted as random terms, the total variance of an observation is just 

the sum of the variance components: 
 

var(𝑦𝑖𝑗𝑘) =  var(𝑅𝑖) + var(𝐵𝑖𝑗) + var(𝑒𝑖𝑗𝑘) 

= 𝜎𝑅
2 + 𝜎𝐵

2 + 𝜎2  

= 1215.9 + 179.3 + 428.7 

= 1823.9 

 

It follows that omitting a random term from the model is equivalent to setting its 

variance component equal to zero. The covariance between yields from two plots in the 

same incomplete block is then the sum of the replicate and sub-block variance 

components, derived as 
 

cov(𝑦𝑖𝑗𝑘, 𝑦𝑖𝑗𝑙) =  cov(𝑅𝑖 + 𝐵𝑖𝑗 + 𝑒𝑖𝑗𝑘, 𝑅𝑖 + 𝐵𝑖𝑗 + 𝑒𝑖𝑗𝑙) 

=var(𝑅𝑖) + var(𝐵𝑖𝑗) 

=  𝜎𝑅
2 + 𝜎𝐵

2 

= 1215.9 + 179.3 

= 1395.2 
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Similarly, the covariance between yields from two plots in the same replicate is equal 

to the replicate variance component, i.e. 1215.9, and the covariance between two plots in 

different replicates is zero, as they have no random terms in common. The variance model 

generated by the design thus implies that measurements from plots within the same 

incomplete block are slightly more highly correlated than those within the same replicate 

but in different sub-blocks, and that there is no correlation between measurements from 

separate replicates. Other patterns of covariance can be generated by using different 

random terms or correlated random effects. 

Whilst the definition of the variance components as variances of the random effects 

requires that the variance components are positive, in fact the variance structure requires 

only that the total variance is positive and, more generally, that the variance of any linear 

combination of observations is also positive (this property is known as positive-

definiteness). In general, as we use random terms to reflect structure, we expect that units 

with random effects in common will be more similar than units without, and so generally 

variance components are expected to be positive. However, in some circumstances it is 

natural to allow variance components to be negative. For example, in field experiments, 

blocks are laid out on areas of ground thought to be reasonably homogeneous with respect 

to fertility and other trends. If a mistake is made, so that blocks are laid out in the wrong 

direction, then plots within the same block may be less alike than plots in different blocks, 

and this can only be modelled by using a negative variance component for blocks. Even 

if variance components are positive, it is possible that they may be estimated as negative 

values, due to sampling variability. For example, a variance component with true value 

equal to zero has a 50% chance of being estimated as a negative value. Genstat allows the 

user to specify whether estimates should be constrained to remain positive, via the Initial 

Values button on the Linear Mixed Models menu (Figure 10.2). 

Estimates of variance components are presented with their standard errors (SEs). In 

many cases, some of the estimated variance components are small compared to their SEs 

and it might be natural to think of dropping these terms from the model. We advise against 

this course for two distinct reasons. Firstly, the SEs for variance components are only 

reliable for testing when there is a large amount of information contributing to the 

estimate; again, the SEs depend on an asymptotic approximation. A better approach is the 

use of likelihood ratio tests (LRTs), these are described in Section 10.4 below. Secondly, 

some of the random terms will have been included to describe the randomization structure 

of the design. This structure is a property of the design and is used to get appropriate 

degrees of freedom (df) for approximate F tests: the omission of some terms means that 

the random model is no longer serving this purpose.  
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10.3 More complex random models 

 

So far, we have assumed that effects within a single random term are independent with a 

Normal distribution with common variance. We retain the assumption of a Normal 

distribution, but can relax the assumptions of independence and common variance, 

leading to a much wider range of variance models. The full range of variance models 

provided in Genstat is given in the Statistics Guide (Section 5.4 of The Guide to the 

Genstat Command Language, Part 2 Statistics), with some examples of their use given 

in A Guide to REML in Genstat. In this Guide, we focus on spatial models used within 

the QTL system for analysis of a single field trial (Section 3.6) and covariance modelling 

for genotype by environment (G×E) interactions (Chapter 4). 

 

10.4 Comparison of random models: likelihood ratio tests 

 

When using REML estimation, the log-residual likelihood value (ℓR) can be used to 

compare nested models that have different random terms but the same set of fixed terms 

(Welham & Thompson, 1997). In Genstat, the log residual likelihood is obtained via the 

deviance, denoted D, which is calculated by omitting some constant terms (with respect 

to the variance parameters) from the log-residual likelihood, then multiplying by -2. A 

random model that fits well will have a relatively high value of ℓR and hence a relatively 

low value of the deviance but, because of the omission of the constant terms, the absolute 

scale of the deviance is arbitrary and it may even be negative. The deviance for a term 

can be viewed using Options or Further Output then check the Deviance box under Display. 

The deviance for the standard model for the HEAT05 trial is shown below: 

 
Deviance: -2*Log-Likelihood 

--------------------------- 

 

                   Deviance   d.f. 

                    1348.11   166 

 

Note: deviance omits constants which depend on fixed model fitted. 

 

The message printed below the deviance highlights that fact that one of the omitted 

constants is related to the fixed model. The presence of this constant in ℓR is the reason 

why it cannot be used to compare models with different fixed terms, and this is the case 

whether or not it is omitted from calculation of the log-residual likelihood. 
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Two nested random models (with the same fixed terms) can be compared using the 

difference between their deviances. We denote the larger model as M0 with deviance D0, 

and drop one or more random terms to obtain the smaller model, denoted as M1 with 

deviance D1. We wish to test the null hypothesis that the larger model gives no 

improvement over the smaller model. In the context of a variance components model 

where we wish to drop one term, this implies that the variance component of the dropped 

term is equal to zero. If the variance parameters in the dropped terms are unconstrained 

then under the null hypothesis the change in deviance, defined as D1-D0, is ≥ 0 is 

asymptotically distributed as a chi-square variable with df equal to the number of variance 

parameters in the dropped terms. For example, if the smaller model is constructed by 

dropping a single variance component from the random model, then the change in 

deviance has a chi-square distribution on 1 df.  

The situation becomes more complicated when one or more of the variance parameters 

is constrained, and a constraint boundary coincides with the reduced model. This is the 

case in a variance components model when the null hypothesis is that one of the variance 

components is zero and that variance component is constrained to stay positive. In this 

case, the asymptotic distribution of the change in deviance becomes a mixture of chi-

square distributions (Stram & Lee, 1994). For the case of a single variance component, 

this becomes a 50:50 mixture of a chi-square distributions with 0 and 1 df. In practice, 

this adjustment requires the halving of p-values obtained with respect to the chi-square 

distribution on 1 df. In other cases, the mixtures and resulting calculations become more 

complex. Crainiceanu & Ruppert (2004) argued that the Stram & Lee (1994) results do 

not apply to many mixed models, and this is an area of ongoing research. 

An alternative approach uses information criteria to compare models, which again 

must have the same fixed terms but may have different random terms. In this case, there 

is no requirement for the random models to be nested. The Akaike and Schwarz 

information criteria (AIC and SIC, respectively) are defined as: 

𝐴𝐼𝐶 = −2ℓ𝑅 + 2𝑡 = 𝐷 + 2𝑡 

𝑆𝐼𝐶 = −2ℓ𝑅 + 𝑡 log(𝑛 − 𝑝) = 𝐷 + 𝑡 log(𝑛 − 𝑝) 

where t is the number of variance parameters in the model, n is the number of 

observations, and p is the number of independent fixed parameters. SIC is also known as 

the Bayesian Information Criterion (BIC). Both AIC and SIC are based on the deviance 

plus a penalty based on the number of variance parameters estimated and, in the case of 

SIC, the number of observations used in the log-residual likelihood (or the number of 

residual contrasts, in the terminology of Patterson & Thompson (1971)). The penalty is 

intended to offset the improvement in likelihood against the lack of parsimony implied 



10.5  Predictors of random effects (BLUPs) 

217 

 

by adding more parameters into the model. Using this definition, smaller values of AIC 

or SIC indicate a better fit of the variance model. The SIC tends to be more conservative 

than AIC, i.e. to prefer models with fewer variance parameters. The selection of models 

using these criteria is demonstrated in the context of spatial analysis of a single trial 

(Chapter 3) and modelling genotype by environment interactions (Chapter 4). 

 

10.5 Predictors of random effects (BLUPs) 

 

We stated earlier that the parameters of the linear mixed model are the fixed effects and 

the variance components, but we wrote down our models in terms of fixed and random 

effects. In this section, we resolve this apparent contradiction and discuss the status of the 

random effects. 

The linear mixed can be written in two forms. The form above, written in terms of both 

the fixed and random effects, is known as the conditional model since the response 

depends (is conditional) on the random effects. The marginal form of the model is 

obtained by integrating over the population of random effects: this gives a model with the 

expected value of the observations determined by the fixed terms alone, and the variance-

covariance matrix of the observations is that generated by the random terms (as described 

above). Estimation takes place on the marginal model, whose parameters are the fixed 

effects and the variance components. However, we are still often interested in the values 

of the random effects, and so would like to obtain an estimate of their values, although 

clearly this only makes sense when the associated variance component is positive (as 

otherwise the random effects cannot be defined). 

Because the random effects are not true parameters we obtain predictors, rather than 

estimates, of their values. These predictors are often called BLUPs, which is an acronym 

for best linear unbiased predictors. In this context, the label ‘unbiased’ can be slightly 

misleading, as it means that the expected value of the predictor is equal to the expected 

value of the population, which is zero. This does not mean that the expected value of the 

predictor is equal to the true random effect, and in fact the predictors are biased towards 

zero, a property known as shrinkage. This is illustrated in Figure 10.3, where predicted 

means generated with the Genotype factor in the random model are plotted against 

predictions generated with the Genotype factor in the fixed model.  
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Figure 10.3: Genotype predictions (×) from HEAT05 trial based on random or fixed genotype 

effects with 1:1 line.  

 

The adjective ‘best’ means that these predictors have minimum mean squared error 

(defined as variance plus squared bias), conditional on the estimated variance 

components. This property of minimum mean squared error is attractive where accuracy 

in prediction is more important than unbiasedness, and is sometimes used as a justification 

for assigning terms to the random rather than fixed model, particularly in the context of 

variety evaluation (see Smith et al., 2005, for discussion in this context).  

 

10.6 Assessing fixed model terms 

 

The estimates of the fixed effects used with REML are often called BLUEs, which is an 

acronym for best linear unbiased estimates. The property of unbiasedness means that the 

expected value of the estimator is equal to the true parameter value. In this context, ‘best’ 

means that these estimates have minimum variance within the class of unbiased 

estimators, conditional on the estimated variance components. 

We usually wish to investigate the contribution of individual terms within the fixed 

model in explaining patterns of response and this is achieved using Wald tests. If the set 
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of fixed terms is non-orthogonal, it is necessary to consider both incremental and marginal 

forms of these statistics; incremental statistics reflect the change in fit on sequentially 

adding individual terms into the fixed model, and marginal statistics reflect the change 

on dropping individual terms from the full model. On dropping terms, we respect 

marginality, for example, we do not drop a term if it is involved in any higher-order 

interactions (for further information see the ANOVA and Design Guide or The Guide to 

the Genstat Command Language, Part 2 Statistics). If we use Options on the Linear Mixed 

Models menu to display Wald Tests, then we get the following output: 

 
******** Warning 6, code VD 39, statement 1 on line 170 

 

Command: REML [PRINT=waldTests; FMETHOD=automatic; MVINCLUDE=*; METHOD=AI; 

MAXCYCLE=20] yield; SAVE=_remlsave 

Error in AI algorithm when forming denominator DF for approximate F-tests. 

 

 

Wald tests for fixed effects 

---------------------------- 

 

Sequentially adding terms to fixed model 

 

Fixed term                 Wald statistic    d.f.     Wald/d.f.  chi pr 

Genotype                          1168.72     168          6.96  <0.001 

 

Dropping individual terms from full fixed model 

 

Fixed term                 Wald statistic    d.f.     Wald/d.f.  chi pr 

Genotype                          1168.72     168          6.96  <0.001 

 

* MESSAGE: chi-square distribution for Wald tests is an asymptotic approximation 

(i.e. for large samples) and underestimates the probabilities in other cases. 

 

The warning message is discussed further below. With only one fixed model term, the 

two summary tables contain the same values, and indicate very strong evidence for 

differences between genotypes (p-value<0.001).  

For a single effect, the Wald statistic is equivalent to the square of the t-statistic, 

calculated by dividing the estimated effect by its standard error. For a set of effects 

corresponding to a model term, a Wald statistic can be thought of as the sum of squares 

of the effects weighted by their variance-covariance matrix. The asymptotic reference 

distribution for the Wald statistic is a chi-square distribution with df equal to the df of the 

term. This distribution ignores variation associated with estimation of the variance 

components. Hence, it is analogous to using a Normal rather than a t distribution for a 
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two-sample test when the variance is unknown. Some caution is therefore required in the 

use of Wald tests, which tend to be too optimistic, i.e. to give false positive results more 

often than would be expected (Welham & Thompson, 1997). However, the approximation 

improves greatly as the residual df associated with the estimated variance-covariance 

matrix increases. In the context of QTL detection with large numbers of genotypes, the 

approximation will often be satisfactory.  

To avoid this problem, various methods exist to convert, or adjust, Wald statistics into 

a form that can be comparable to an F distribution, where the denominator df gives a 

measure of uncertainty in the variance estimation. The most popular method was 

introduced by Kenward and Roger (1997). This method divides the Wald statistic by the 

df of the treatment term to give the form of an F statistic. This statistic is compared to an 

F distribution with numerator df equal to those of the treatment term, and the method 

provides an estimate for the denominator df. As with the Satterthwaite approximation (see 

ANOVA and Design Guide), these denominator df will often be non-integer. For balanced 

designs, F tests based on the Kenward-Roger method will be exactly the same as F tests 

based on the variance ratios in an ANOVA table. By default, Genstat will calculate the 

approximate F-tests in preference to Wald statistics. This default can be changed using 

the Options on the Linear Mixed Models menu. Unfortunately, calculation of this adjustment 

can be costly in terms of memory and occasionally fails, as in the example above. In this 

case, the Wald tests will be used instead.  

The table of marginal Wald or approximate F-tests can be used to implement a process 

of backwards selection for the fixed model, refitting the model each time a term is 

dropped. Predictions from the final model can be made using the Predict button, and the 

fitted means can be graphed using Further Output | Means Plot 

 

10.7 Model checking and goodness of fit 

 

There are several different definitions of residuals from the linear mixed model. 

Predictors for the model deviations are known as the conditional residuals. Alternatively, 

marginal residuals can be calculated as the sum of all of the random effects for each 

observation. Similarly, fitted values for each observation can be calculated using all 

except the final (deviations) term (which we denote conditional fitted values) or omitting 

all of the random terms (which we denote marginal fitted values). Both types of residual 

and fitted value can be obtained from Linear Mixed Models | Save by choosing the terms 

used to form the residuals - these terms are then excluded from the fitted values (Figure 
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10.4). Conditional residuals and fitted values are not formed when the model contains 

negative variance components, as these quantities are undefined in this case. 

 

 
 

Figure 10.4: Saving residuals and fitted values. Conditional residuals and fitted values are saved 

by setting Method for Residuals to Final random term only. Marginal residuals and fitted values 

are saved by setting Method for Residuals to Combine all random terms. 

 

Assumptions of normality, independence and equal variance can be investigated using 

these quantities in addition to the BLUPs from the individual random terms (described in 

Section 10.5). 

The residuals and BLUPs are not standardized or pre-whitened. For conditional 

residuals or BLUPs, we expect that they should reflect the variance model for the random 

term from which they arise. For a set of independent random effects, it is often useful to 
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form a histogram or Normal quantile plots of the residuals or BLUPs to assess the 

approximation to a Normal distribution. For random effects with serial correlation and a 

common variance, it may be helpful to plot a one- or two-dimensional variogram to assess 

whether the observed pattern of correlation matches that expected for the model (see 

Section 3.6). 

Construction of the fitted values plot, which plots the residuals against the fitted values 

to detect variance heterogeneity, requires some thought. The inclusion of random effects 

in the conditional fitted values means that shrinkage may induce correlation between the 

conditional residuals and fitted values, which occasionally results in trend in a fitted 

values plot. If this does occur, it can be investigated by plotting the conditional residuals 

against the marginal fitted values. If the trend vanishes, then it is an artefact of shrinkage, 

and can be ignored; if the trend does not vanish, then it indicates some underlying problem 

with the model. Following an analysis, diagnostics plots for conditional residuals can be 

generated from the Linear Mixed Models menu using the Further Output button and then 

selecting the Residual Plots button on the Linear Mixed Model Further Output menu (Figure 

10.5). The resulting composite set of residual plots for model 1 for the HEAT05 trial is 

shown in Figure 10.6. There is no evidence of variance heterogeneity or a non-Normal 

distribution of the deviations in these plots.  

 

 
Figure 10.5: Generating conditional residual plots using the Residual Plots button on the Linear 

Mixed Model Further Output menu. 
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Figure 10.6: Composite set of plots for conditional residuals from the HEAT05 trial. 

 

There is currently no generally accepted analogue of the adjusted R2 statistic to 

quantify the explanatory performance of linear mixed models. It is generally acceptable 

to state whether fixed terms show evidence of group differences (factors) or linear trend 

(variates), based on the outcome of Wald or approximate F-tests. However, one approach 

to calculating the percentage variance accounted for by the fixed model is based on the 

variance of an observation, as defined in Section 10.2, in terms of the sum of the variance 

components. The baseline total variance can be calculated as the sum of the variance 

components when the constant term alone is included in the fixed model. This is 

compared to the sum of the variance components for the fixed model under consideration, 

and the percentage reduction can then be considered as the percentage variance accounted 

for by the fixed model. This statistic can be used to quantify the performance of different 

fixed models, for a given response and random model. 
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As an illustration, we calculate the % variance accounted for by the genotype factor in 

Model 1 for the HEAT05 trial. If we fit the model  

 

Fixed model:  

Random model: Rep/Subblock       

 

and ask for a model summary and estimated variance components to be displayed, then 

we obtain the following output: 

 

REML variance components analysis 

================================= 

 

Response variate:  yield 

Fixed model:       Constant 

Random model:      Rep + Rep.Subblock 

Number of units:   338 

 

Residual term has been added to model 

 

Sparse algorithm with AI optimisation 

 

 

Estimated variance components 

----------------------------- 

 

Random term               component        s.e. 

Rep                           1208.       1743. 

Rep.Subblock                   183.         93. 

 

 

Residual variance model 

----------------------- 

 

Term                  Model(order)  Parameter        Estimate      s.e. 

Residual              Identity      Sigma2              1787.      143. 

 

This is a null model, with only the overall constant term in the fixed model. The total 

variance is equal to the sum of the variance components and the residual variance, and is 

equal to 1208 + 183 + 1787 = 3178. In Section 10.2, we found that the total variance for 

Model 1, which included the Genotype factor as a fixed term, was 1824. The percentage 

variance accounted for by adding the genotype term into the model is therefore 100 × 

(3178-1824) / 3178 = 42.6%. 
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10.8 A recipe for analysis of linear mixed models 

 

Various different strategies are available for establishing a suitable mixed model for a 

given data set. The following strategy should lead to a sensible model for a designed 

experiment: 

 

Step 1: Establish a baseline set of fixed and random terms. The randomization structure 

of the experimental design should be encompassed in the random terms. The experimental 

treatments may be included as either fixed or random terms, according to the aims of 

analysis (see Section 10.1). 

 

Step 2: Run the baseline model, and assess the residuals for evidence of departures from 

the model assumptions. Variance heterogeneity related to fitted values may be dealt with 

by use of a suitable transformation of the response variate. Departures such as variance 

heterogeneity related to treatment groups, or serial correlation, require extension of the 

random model (Section 10.3). Other common departures include nonlinear trends for 

explanatory variates, or relationships with factors or variates not included in the model; 

these may be dealt with by adding suitable terms into the fixed or random models. 

 

Step 3: Extend and refine the random model using the full fixed model - but retain all 

terms associated with the randomization structure. Assess differences between random 

models using the deviance or information criteria such as AIC or SIC (Section 10.4). Add 

fixed terms to account for global trends, e.g. linear trend across a field trial. 

 

Step 4: Once a suitable random model has been determined, refine the fixed model. The 

table of marginal Wald or approximate F-tests (Section 10.6) can be used to implement a 

process of backwards selection for the fixed model, refitting the model each time a term 

is dropped. Make predictions from the final model. 
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11 Genstat commands 
 

The Genstat QTL system comprises a set of menus and commands to facilitate QTL 

analysis, bringing together a wide range of statistical techniques. In this Guide, QTL 

detection has been demonstrated using the menu system. However, all analyses can be 

achieved using commands in the Genstat language. This chapter introduces the suite of 

procedures available in Genstat’s QTL system, several of which make use the REML 

facilities. Full documentation is provided in Genstat Reference Manual (Part 3 for 

Procedures) available via Help | Reference Manual | Procedures (Figure 11.1), and within 

the Genstat Help System ( ).  

 

 

Figure 11.1: Accessing the Genstat Reference Manual (Part 3 for Procedures). 

 

Many of the procedures listed below offer additional options, not specifiable via the 

QTL menus, which allow for more flexible and/or complex analyses. To learn more about 

unlocking the full power of the Genstat command language, refer to An Introduction to 

the Genstat Command Language.  

Note, use of the menus will generate commands in the Input Log window that can be 

used to repeat the analysis at a later date, or edited to modify the analysis if desired. 

 

Data import/export 

QEXPORT  exports genotypic data for QTL analysis 

QFLAPJACK  creates a Flapjack project file from genotypic and phenotypic data 

QIMPORT  imports genotypic and phenotypic data for QTL analysis 
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Data manipulation 

QMATCH matches different data structures to be used in QTL estimation 

QMVESTIMATE replaces missing marker scores using conditional genotypic probabilities 

QMVREPLACE replaces missing marker scores with the mode scores of the most similar 

genotypes 

 

Data exploration 

DQMAP displays a genetic map 

DQMKSCORES plots a grid of marker scores for genotypes and indicates missing data 

QMKDIAGNOSTICS generates descriptive statistics and diagnostic plots of marker data 

QMKRECODE recodes marker scores into separate alleles 

 

Map Construction 

DQRECOMBINATIONS plots a matrix of recombination frequencies between markers 

QLINKAGEGROUPS forms linkage groups using marker data from experimental 

populations 

QMAP constructs genetic linkage maps using marker data from experimental 

populations 

QMKSELECT obtains a representative selection of markers by means of genetic 

distance sampling or genetic distance optimization 

QRECOMBINATIONS calculates the expected number of recombinations and the 

recombination frequencies between markers 

 

Phenotypic analysis 

VGESELECT selects the best variance-covariance model for a set of environments 

 

Genotypic analysis 

GPREDICTION produces genomic predictions (breeding values) using phenotypic and 

marker information 

QEIGENANALYSIS uses principal components analysis and the Tracy-Widom statistic to 

find the number of significant principal components to represent a 

set of variables 

QGSELECT obtains a representative selection of genotypes by means of genetic 

distance sampling or genetic distance optimization 

QIBDPROBABILITIES reads molecular marker data and calculates IBD probabilities 
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QKINSHIPMATRIX forms a kinship matrix from molecular markers 

QLDDECAY estimates linkage disequilibrium (LD) decay along a chromosome 

 

QTL analysis 

DQMQTLSCAN plots the results of a genome-wide scan for QTL effects in multi-

environment trials 

DQSQTLSCAN plots the results of a genome-wide scan for QTL effects in single-

environment trials 

QBESTGENOTYPES sorts individuals of a segregating population by their genetic 

similarity with a target genotype, using the identity by descent (IBD) 

information at QTL positions 

QCANDIDATES selects QTLs on the basis of a test statistic profile along the genome 

QDESCRIBE prints summary statistics of genotypes 

QMASSOCIATION performs multi-environment marker-trait association analysis in a 

genetically diverse population using bi-allelic and multi-allelic 

markers 

QMBACKSELECT performs a QTL backward selection for loci in multi-environment 

trials or multiple populations 

QMESTIMATE calculates QTL effects in multi-environment trials or multiple 

populations 

QMQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite 

Mapping) in multi-environment trials or multiple populations 

QMTBACKSELECT performs a QTL backward selection for loci in multi-trait trials 

QMTESTIMATE calculates QTL effects in multi-trait trials 

QMTQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite 

Interval Mapping) in multi-trait trials 

QMVAF calculates percentage variance accounted for by QTL effects in a multi-

environment analysis 

QREPORT creates an HTML report from QTL linkage or association analysis results 

QSASSOCIATION performs marker-trait association analysis in a genetically diverse 

population using bi-allelic and multi-allelic markers 

QSBACKSELECT performs a backward selection for loci in single-environment trials 

QSELECTIONINDEX calculates (molecular) selection indexes by using phenotypic 

information and/or molecular scores of multiple traits 

QSESTIMATE calculates QTL effects in single-environment trials 
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QSIMULATE simulates marker data and QTL effects for single and multiple 

environment trials 

QSQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite 

Mapping) in single-environment trials 

QTHRESHOLD calculates a threshold to identify a significant QTL 
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